

PROJEKT:

Gemeindewerke Steinhagen GmbH

HYDROGEOLOGISCHE BEWEISSICHERUNG IM EINZUGSGEBIET DES WASSERWERKS PATTHORST

KALENDERJAHR 2021

Für:

GEMEINDEWERKE STEINHAGEN GMBH WESTERNKAMP 12

33803 STEINHAGEN

BEARBEITER:

DIPL.-GEOL. FRANK SCHMIDT DIPL.-ING. ERNA SEMKE DIPL.-ING. VIOLA REDECKER

PROJ.-NR.: 1810J-18

BIELEFELD, IM OKTOBER 2022

BERATENDE HYDROGEOLOGEN BDG BERATENDE INGENIEURE VBI

Seite 2

Inhalt

1	VOF	GANG UND AUFTRAG	4
2	ZUS	AMMENFASSUNG	6
3	NIEI	DERSCHLAGSENTWICKLUNG	9
4	ROF	WASSERFÖRDERMENGEN	12
5	GRU	INDWASSERSTANDSENTWICKLUNG	16
	5.1	REFERENZMESSSTELLEN	16
	5.2	FÖRDERBEDINGT BEEINFLUSSTE MESSSTELLEN	18
	5.3	GRUNDWASSERSTANDSENTWICKLUNGEN AN MESSSTELLEN IM BEREICH DER	
	LANDS	HAFTSÖKOLOGISCHEN PROBEFLÄCHEN	20
	5.4	GRUNDWASSERGLEICHENPLÄNE 10/2021	26
6	KLII	MAKORREKTUR UND GRUNDWASSERDIFFERENZEN	28
	6.1	KLIMATISCHE KORREKTUR DES GRUNDWASSERSTANDES	28
	6.2	GRUNDWASSERDIFFERENZENPLAN	29
7	ENT	WICKLUNG DER GRUNDWASSERBESCHAFFENHEIT	30
8	AUS	BLICK	34

Pläne				
Titel	Maßstab			
Grundwassergleichenplan 10/2021 - Hauptgrundwasserleiter (Förderhorizont)	1 : 33.333			
Grundwassergleichenplan 10/2021 - Detailplan Wasserwerk Patthorst Hauptgrundwasserleiter (Förderhorizont, mit Förderung aus Brunnen 9)	1 : 15.000			
Grundwasserdifferenzenplan Zustand 10/2021 - Zustand 10/ Übersichtsplan Wasserwerk Patthorst	2003 1 : 15:000			
Grundwasserdifferenzenplan Zustand 10/2021 - Zustand 10/ Detailausschnitt Wasserwerk Patthorst	2003 1 : 7.500			
Anhang				
Stammdaten der Grundwassermessstellen und Brunnen m tagsmessung sowie klimatisch bedingte Abweichung	nit Stich-			
: Fördermengen				
Grundwasserstandsganglinien				
: Niederschlagsentwicklung				
: Hydrochemie				
Anhang 5.1: Ergebnisse der hydrochemischen Analysen (Tabelle, 5 Jahre)				
.2: Hydrochemische Entwicklung an den Förderbrunnen (Gra	fiken)			
	Titel Grundwassergleichenplan 10/2021 - Hauptgrundwasserleiter (Förderhorizont) Grundwassergleichenplan 10/2021 - Detailplan Wasserwerk Patthorst Hauptgrundwasserleiter (Förderhorizont, mit Förderung aus Brunnen 9) Grundwasserdifferenzenplan Zustand 10/2021 - Zustand 10/ Übersichtsplan Wasserwerk Patthorst Grundwasserdifferenzenplan Zustand 10/2021 - Zustand 10/ Detailausschnitt Wasserwerk Patthorst Anhang Stammdaten der Grundwassermessstellen und Brunnen m tagsmessung sowie klimatisch bedingte Abweichung Fördermengen Grundwasserstandsganglinien Niederschlagsentwicklung Hydrochemie			

Anlagen

Anlage 1: Zusammenfassende wasserwirtschaftliche Tabelle mit Darlegung der bewertungsrelevanten klimatischen und wasserwirtschaftlichen Kenndaten für den Beweissicherungszeitraum der letzten sechs Jahre (2015 bis 2021)

Anlage 2: Regionale Bewertung der klimatischen und hydrogeologischen Situation im Einzugsgebiet des WWK Patthorst im Zeitraum 1996-2021

1 Vorgang und Auftrag

Die Gemeindewerke Steinhagen GmbH, Westernkamp 12 in 33803 Steinhagen, betreiben unweit von Steinhagen das Wasserwerk Patthorst. Gemäß den Nebenbestimmungen des im Jahr 2006 erlassenen Bewilligungsbescheides des damaligen Staatlichen Amtes für Umwelt und Arbeitsschutz OWL (Az.: 22/54.1-83.20.GT/ST1), in der Fassung des 2. Änderungsbescheides vom 10.01.2017 (Az.: 54.01.07.54-010), zur Grundwasserförderung aus den Brunnen 1 bis 4 sowie 7 bis 11 des Wasserwerks Patthorst wird eine Dokumentation der Messungen von Grundwasserständen und Fördermengen zur Beweissicherung gefordert. Mit dem 2. Änderungsbescheid vom 10.01.2017 wurde der Neubau der Brunnen 10 und 11 bewilligt, die im Jahr 2017 errichtet und 2018 in Betrieb genommen wurden. Im Jahr 2019 wurde im Zeitraum vom 22.05 2019 bis 05.09.2019 der Ersatzbrunnen 2a für den Brunnen 2 errichtet, der seit Februar 2020 wieder in die Wasserversorgung integriert ist. Der Rückbau des Altbrunnens erfolgte ab dem 04.02.2019. Brunnen 8 wurde im Jahr 2020 durch den Brunnen 8a ersetzt, welcher im Zeitraum vom 18.06.-05.08.2020 errichtet und ab dem 06.11.2020 in die Wasserversorgung integriert wurde. Der Rückbau des Altbrunnens erfolgte ab dem 23.06.2020. Im Jahr 2021 wurden wie geplant die Brunnen 1 und 4 durch Neubrunnen ersetzt (Brunnen 1a und 4a).

Die Gemeindewerke Steinhagen GmbH verfügt für die neun Kiesschüttungsbrunnen über die wasserrechtliche Bewilligung vom 19.05.2006 zur Grundwasserentnahme in Höhe von bis zu:

315 m³/h, 5.000 m³/d, 1.340.000 m³/a.

Am 11.04.2011 trat der 1. Änderungsbescheid in Kraft, in der die mit der Nebenbestimmung 14 festgelegte vegetationskundliche jährliche Beobachtung von Dauerbeobachtungsflächen auf eine fünfjährliche Beobachtung der Beobachtungsflächen 1, 3n, 4 und 5n reduziert wurde (beginnend in 2015), solange die Fördermenge von 1,1 Mio. m³/a nicht überschritten wird und sich bei der Auswertung der Wasserstandsmessungen keine signifikanten Veränderungen zeigen. In Abstimmung mit der Bezirksregierung Detmold wurde der Bericht zum landschaftsökologischen Monitoring aus organisatorischen Gründen auf das Kalenderjahr 2017 verschoben.

Mit dem 2. Änderungsbescheid vom 10.01.2017 wurden die neu errichteten Brunnen 10 und 11 in die Bewilligung integriert und die Brunnen 5 und 6 wegen geringer Ergiebigkeit und erhöhter Mangan- und Eisen-Gehalte herausgenommen. Die genehmigte Fördermenge änderte sich nicht.

Mit Veröffentlichung im Amtsblatt vom 10.02.2020 wurde das neue Wasserschutzgebiet "Steinhagen-Patthorst" festgesetzt. Die aktuellen Grenzen des WSG sind in den Plänen berücksichtigt.

/1/ BEZIRKSREGIERUNG DETMOLD (02/2020): Ordnungsbehördliche Verordnung zur Festsetzung des Wasserschutzgebietes Steinhagen-Patthorst - Wasserschutzgebietsverordnung Steinhagen-Patthorst vom 22. Januar 2020 (Az.: 54.01.09.54 3916 07)

Am 02.11.2020 trat der 3. Änderungsbescheid in Kraft, welcher eine höhere Tagesfördermenge von 5.500 m³/d bewilligt, so dass die wasserrechtlich zugesprochene Entnahme seither

315 m³/h, 5.500 m³/d, 1.340.000 m³/a

beträgt.

Das Büro Schmidt und Partner GmbH erhielt zur Betrachtung und Bewertung des Einflusses der Grundwasserentnahme auf die Grundwassermorphologie von den Gemeindewerken Steinhagen GmbH den Auftrag zur Erstellung von Grundwassergleichen- und Differenzenplänen nebst Erläuterungen. Seit dem Jahre 2003 wird in Form einer Kurzdokumentation die wasserwirtschaftliche Situation (Grundwasserentnahme) mit den klimatischen und hydrologischen Randbedingungen (Niederschlag, Grundwasserstandsentwicklung) jährlich dargestellt und erläutert. Die Grundwassergleichenpläne werden jeweils auf Grundlage einer Stichtagsmessung von Anfang Oktober eines jeden Jahres erstellt.

Die Dokumentation dient insbesondere dazu, den Einfluss des im Jahre 2004 in Betrieb genommenen Brunnen 9 auf die Grundwasserverhältnisse zu betrachten. Als Bezugsgrößen werden das Grundwasserstandsniveau und die Grundwasserabsenkung zur Stichtagsmessung der Grundwasserstände im Oktober 2003 zugrunde gelegt, da der Brunnen 9 zu diesem Zeitpunkt noch nicht in Betrieb war. Weiterhin wird der Einfluss der 2018 neu errichteten Brunnen 10 und 11 untersucht.

Nachstehend wird der hydrogeologische Beweissicherungsbericht für das Wasserwerk Patthorst zum Kalenderjahr 2021 vorgelegt. Der Bericht enthält erstmalig eine regionale Betrachtung der klimatischen und hydrogeologischen Situation des Zeitraumes 1996-2021 (Kap. 8).

2 Zusammenfassung

Niederschlagsentwicklung (Kap. 3)

Das Wasserwirtschaftsjahr 2021 fiel insgesamt ausgeglichener als die Vorjahre aus. Sowohl beim WHJ, als auch beim SHJ 2021 ist gegenüber dem Vorzeitraum eine gegensätzliche Entwicklung eingetreten; so fällt das WHJ 2021 nach 3 überschüssigen WHJ erstmals wieder deutlich defizitär aus und das SHJ 2021 erstmals nach 3 unter-durchschnittlichen SHJ wieder überschüssig. Das WHJ 2022 liegt etwas unter dem langjährigen Durchschnitt und ist trotz des überaus nassen Februar 2022 als leicht zu trocken zu charakterisieren.

Seit Beginn der Phase geringerer Niederschlagsüberschüsse im Jahre 2009 hat sich ein kumulatives Gesamtniederschlagsdefizit ergeben, welches annähernd einem Jahresniederschlag entspricht.

Im Bereich Obersteinhagen liegen für den Zeitraum 2018-2021 mit -12% deutlich geringere kumulative prozentuale Defizite vor, als an den Niederschlagsmessstationen Lysimeteranlage Senne (-45%) und Halle-Künsebeck (-34%).

Die Niederschlagsverhältnisse führen dazu, dass weiterhin ausgeprägt defizitäre Grundwasserspeicherverhältnisse und ein deutlich zu niedriges Grundwasserstandsniveau vorliegen, wie es die nach wie vor niedrigen Wasserstände der Referenzmessstellen zeigen.

Rohwasserfördermengen (Kap. 4)

Im Kalenderjahr 2021 entsprach die Jahresentnahme rd. 1,1 Mio.m³/a und damit der durchschnittlichen Entnahme seit 2018 (nach Inbetriebnahme der Brunnen 10 und 11). Das Wasserrecht wurde zu knapp 90% ausgeschöpft. Gegenüber dem Vorjahr 2020, in dem mit 1,17 Mio.m³/a die bisherige Maximalentnahme erfolgte, wurde geringfügig weniger entnommen.

Wie geplant wurde der Brunnen 1im Jahr 2021 durch den ab Juli 2021 in Betrieb genommenen Brunnen 1a ersetzt. Ebenso wurde der Brunnen 4 rückgebaut (September 2021). Der Ersatzbrunnen 4a ging Ende Januar 2022 in Betrieb.

Als Hauptlastbrunnen mit Entnahmen zwischen rd. 145.000 m³/a und 240.000 m³/a werden damit weiterhin die Brunnen 2a, 3, 4 und 11 betrieben. Während die übrigen 5 Brunnen mit deutlich geringeren Entnahmen zwischen rd. 70.000 m³/a und 95.000 m³/a gefördert werden. Die Entnahme an Brunnen 9 lag mit rd. 70.000 m³/a noch einmal geringfügig unter der Vorjahresmenge.

Grundwasserstandsentwicklung (Kap. 5)

Die Niederschlagsverhältnisse waren im WHJ 2021 erstmals seit 3 Winterhalbjahren deutlich defizitär, weswegen die Höchstwasserstände zu Jahresbeginn 2021 das Vorjahresniveau in der Regel nicht erreichen. Durch das folgende, seit 3 Jahres erstmals wieder überschüssige und vor allem kühlere SHJ 2021 und die durchschnittlichen Niederschläge im beginnenden WHJ 2022 sinken die Wasserstände im Kalenderjahr 2021 nicht mehr so tief ab wie im Vorjahr, so dass der Grundwasserspeicher im Jahr 2021 keine weitere Zehrung erfahren hat. Das erreichte unbeeinflusste Grundwasserstandsniveau ist jedoch noch als sehr niedrig einzuordnen.

Durch die geringere Förderung der Brunnen 9 und 10 in den Jahren 2020 und 2021 ist das Wasserstandsniveau in den nahegelegenen Grundwassermessstellen 29 und 34T gegenüber dem Zeitraum vor 2020 insgesamt um rd. 1,0m angestiegen. Die im zentralen Brunnenfeld sowie im unmittelbaren nördlichen Zustrom zu den Förderbrunnen gemessenen Grundwasserstände zeigen eine Verstärkung der förderbedingten Absenkung im Zeitraum 2018-2020. Im Jahr 2021 hat sich hier keine Fortsetzung des fallenden Trends, jedoch eine Fortdauer des niedrigeren Grundwasserstandsniveaus gezeigt.

Im Umfeld der landschaftsökologischen Beobachtungsflächen waren auch im aktuellen Betrachtungsjahr überwiegend keine förderbedingten langanhaltenden, abfallenden Tendenzen in der Wasserstandsentwicklung an den Flächen 1 und 5 zu beobachten. Im Umfeld der Förderbrunnen werden die natürlichen Wasserstandsschwankungen teilweise durch die Grundwasserentnahme des Wasserwerkes Patthorst überlagert. So zeigt sich bei der Beobachtungsfläche 4 eine deutliche Beeinflussung durch die Brunnen 9 und 10 an der GWM 29, an der GWM 28 fällt sie weniger stark aus. Auch an der Beobachtungsfläche 3n lässt sich 2018 – 2019 ein förderbedingt abfallende Tendenz aufgrund der Inbetriebnahme des Brunnens 11 feststellen. Durch die Vergleichmäßigung der Entnahme und eine hiermit einhergehende Verringerung der spezifischen Förderung an den Brunnen 9, 10 und 7 1 hat sich im WWJ 2021 der abfallende Trend nicht fortgesetzt, sondern ist eher durch ein ansteigendes Grundwasserstandsniveau gekennzeichnet.

Die gem. Nebenbestimmung 14 zu erfolgende vegetationskundliche Beweissicherung kann aus Sicht des unterzeichnenden Büros weiterhin im angegebenen Umfang des 1. Änderungsbescheides fortgeführt werden Nach der letzten Begehung im Jahre 2017 ist folglich im Jahre 2022 die nächste vegetationskundliche Untersuchung der Probeflächen durchzuführen.

Für das Einzugsgebiet der Brunnen des Wasserwerk Patthorst ist gegenüber dem Vorjahresmonat ist eine deutliche Erweiterung nach Osten zu verzeichnen, was

dadurch bedingt ist, dass sich der Brunnen 1 zum Zeitpunkt der Stichtagsmessung im Ruhezustand befand, jedoch noch eine Restabsenkung aufwies.

Klimakorrektur und Grundwasserdifferenzen (Kap. 6)

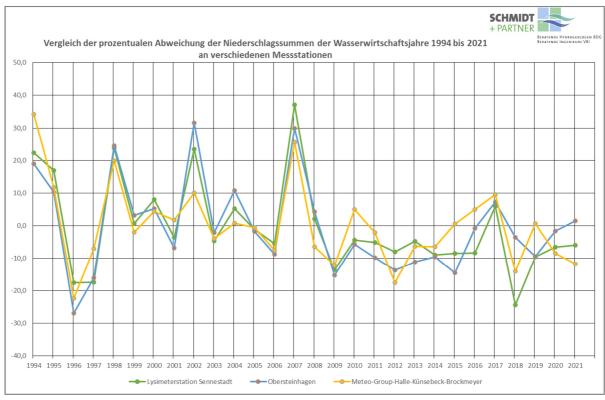
Da das im Oktober 2021 ermittelte Grundwasserstandsniveau 0,04 m über dem Bezugsniveau lag, wurde bei der Konstruktion der förderbedingten Absenkung zum Stichtag im Oktober 2021 auf eine Korrektur der klimatisch bedingten Schwankung verzichtet.

Alle Brunnen waren zum Stichtag 10/ 2021 außer Betrieb, förderbedingte Absenkungen gegenüber dem Vergleichsstichtag 10/2003 traten daher ausschließlich im Nahbereich der Brunnen 9, 10 und 11 auf, die zeitlich erst nach dem Stichtag 10/ 2003 in Betrieb genommen wurden.

Die sich hieraus ergebenden Restabsenkungen bleiben im Bereich der Brunnengruppe 8a bis 10 auf den Bereich der Wasserschutzzone II beschränkt. Am Standort des Brunnens 11 erstrecken sie sich auf einen Bereich von maximal 70 m um den Brunnen. Allerdings stellt der Stichtag nicht die regulären Fördersituation dar.

Die Bewertung ist aufgrund dessen, dass nur ein Teil der Brunnen in Betrieb waren nur eingeschränkt möglich. Um ein vollständiges Bild über die förderbedingte Absenkung und die Geometrie des Einzugsgebietes zu erhalten, ist daher darauf zu achten, dass die Stichtagsmessung möglichst bei vollständigem Brunnenbetrieb und zeitgleich erfolgt.

Entwicklung der Grundwasserbeschaffenheit (Kap. 7)


Die Ergebnisse der Wasseranalysen belegen weiterhin eine hohe Stabilität der Grundwasserbeschaffenheit an allen Brunnen des Wasserwerkes Patthorst; zu Schwankungen kommt es in der Regel nur kurzzeitig in Inbetriebnahmephasen von Ersatzbrunnen. Lediglich am Brunnen 7 zeigt sich seit 2020 eine leichte Zunahme der Sulfatkonzentration bei jedoch nach wie vor geringem Konzentrationsniveau (<70 mg/l).

Die Grenzwerte der TrinkwV wurden alle eingehalten. Eine Veränderung der Rohwasserbeschaffenheit durch die Inbetriebnahme des Brunnens 9 sowie Brunnen 10 und 11 ist anhand der vorliegenden Analysenergebnisse weiterhin nicht zu erkennen. Gehalte an anthropogenen Spurenstoffen werden nicht nachgewiesen.

3 Niederschlagsentwicklung

Zur Dokumentation der Niederschlagsentwicklung im Untersuchungsgebiet wurden bislang die Monatssummen der Niederschläge an den Stationen Senne (Lysimeter) und Ober-Steinhagen bezogen auf den Mittelwert der Jahre 1961-1990 herangezogen. Ab diesem Berichtsjahr wird zusätzlich die Wetterstation der Meteo-Group in Halle-Künsebeck mit einbezogen. Die vergleichende Auswertung wird auf den aktuellen Zeitraum 1994-2021 bezogen (Abbildung 1 sowie Anh. 4). Im Zeitraum ab 2009 häufen sich geringe bis defizitäre Jahresniederschlagssummen, Nassjahre wie 1998, 2002 und 2007 traten in den letzten 12 Jahren nicht mehr auf. Das aufgrund des historisch trockenen Sommers extreme Dürrejahr 2018 wurde jedoch durch das Jahr 1996 noch übertroffen.

Abbildung 1: Abweichung der Niederschlagssummen des WWJ vom langjährigen Mittelwert (1994-2021) an den Stationen Senne, Ober-Steinhagen und Halle-Künsebeck

Die derzeitige Dürrephase seit 2018 ist bis einschl. 2020 gekennzeichnet durch relativ feuchte, ausgeglichene Winterhalbjahre, jedoch deutlich zu warme und trockene Sommerhalbjahre. Im Wasserwirtschaftsjahr 2021 liegen umgekehrte Niederschlagsverhältnisse vor. Das Winterhalbjahr 2021 war erstmals seit 2018 wieder zu trocken, das anschließende Sommerhalbjahr 2021 erstmals nach 3 defizitären SHJ wieder

eine über dem Durchschnitt liegende Niederschlagsbilanz aufweist und zudem klimatisch kühler war als die Vorjahre, entspricht die Niederschlagsbilanz für das WWJ 2021 (Nov 2020-Okt 2021) an der Station Obersteinhagen erstmals seit 2017 wieder in etwa dem langjährigen Durchschnitt.

Tabelle 1: Entwicklung der Niederschlagsmengen sowie Abweichung vom langjährigen Mittel der Jahre 1994 - 2021 an den Messstationen Senne und Obersteinhagen; differenziert in das Winter- und Sommerhalbjahr sowie das wasserwirtschaftliche Gesamtjahr

Langjähriger Durchschnitt (1994 - 2021) der Niederschlagsme Wasserwirtschaftsjahr (Nov. bis Okt.) = 924 Winterhalbjahr (Nov. bis Apr.) = 453 Sommerhalbjahr (Mai bis Okt.) = 471				mm/6 Monate Winterha			virtschaftsjahr (Nov. bis Okt.) = Ibjahr (Nov. bis Apr.) = halbjahr (Mai bis Okt.) =				864 mm/a 414 mm/6 Monate 450 mm/6 Monate								
Lysimeterstation Senne								Station Obersteinhagen				Me	Messstellen-Nr.: 40160047						
			nmerhalbjahr WW- Gesamtjahr						Winterhalbjahr			Sommerhalbjahr WW-				- Gesamtjahr			
	Summe	Abwe	ichung	Summe	Abwe	ichung	Summe	Abwe	eichung		Summe	Abw	ichung	Summe	Abw	eichung	Summe	Abw	eichun
	[mm]	[%]	[mm]	[mm]	[%]	[mm]	[mm]	[%]	[mm]		[mm]	[%]	[mm]	[mm]	[%]	[mm]	[mm]	[%]	[mi
1993				582.2	23,7	111,7	1154.1		• •	1993		` '		533,3	18,5	83,4			
1994	600.4	32.7	147.9	534.3	13,6	63,8	1134.7	22.8	211,0	1994	517.8	25,1	104.0	513.3	14,1	63,4	1031.1	19,4	167
1995	641.4	41,7	188,9	443.6	-5,7	-26.9	1085.0	17,5	161.3	1995	598.1	44,5	184,3	357.4	-20.6	-92.5	955.5	10,6	91.
1996	197,9	-56,3	-254,6	567,5	20,6	97,0	765,4	-17,1	-158,3	1996	177,2	-57,2	-236,6	456,7	1,5	6,8	633,9	-26,6	-229
1997	383,1	-15,3	-69,4	382,8	-18,6	-87,7	765,9	-17,1	-157,8	1997	352,2	-14,9	-61,6	375,6	-16,5	-74,3	727,8	-15,7	-13
1998	454,2	0,4	1,7	693,7	47,4	223,2	1147,9	24,3	224,2	1998	408,2	-1,4	-5,6	670,8	49,1	220,9	1079,0	24,9	215
1999	520,7	15,1	68,2	413,5	-12,1	-57,0	934,2	1,1	10,5	1999	482,1	16,5	68,3	411,8	-8,5	-38,1	893,9	3,5	30
2000	590,7	30,5	138,2	411,5	-12,5	-59,0	1002,2	8,5	78,5	2000	488,9	18,1	75,1	423,5	-5,9	-26,4	912,4	5,6	48
2001	460,0	1,7	7,5	434,4	-7,7	-36,1	894,4	-3,2	-29,3	2001	410,0	-0,9	-3,8	398,3	-11,5	-51,6	808,3	-6,4	-55
2002	570,3	26,0	117,8	575,2	22,3	104,7	1145,5	24,0	221,8	2002	510,2	23,3	96,4	630,8	40,2	180,9	1141,0	32,1	277
2003	474,3	4,8	21,8	410,1	-12,8	-60,4	884,4	-4,3	-39,3	2003	436,1	5,4	22,3	412,2	-8,4	-37,7	848,3	-1,8	-15
2004	435,4	-3,8	-17,1	540,9	15,0	70,4	976,3	5,7	52,6	2004	442,1	6,8	28,3	518,2	15,2	68,3	960,3	11,2	96
2005	441,1	-2,5	-11,4	476,5	1,3	6,0	917,6	-0,7	-6,1	2005	409,8	-1,0	-4,0	442,2	-1,7	-7,7	852,0	-1,4	-11
2006	456,4	0,9	3,9	420,9	-10,5	-49,6	877,3	-5,0	-46,4	2006	386,0	-6,7	-27,8	404,9	-10,0	-45,0	790,9	-8,4	-72
2007	505,0	11,6	52,5	767,8	63,2	297,3	1272,8	37,8	349,1	2007	436,4	5,5	22,6	689,9	53,3	240,0	1126,3	30,4	262
2008	520,4	15,0	67,9	427,2	-9,2	-43,3	947,6	2,6	23,9	2008	475,1	14,8	61,3	428,2	-4,8	-21,7	903,3	4,6	39
2009	367,0	-18,9	-85,5	435,1	-7,5	-35,4	802,1	-13,2	-121,6	2009	309,6	-25,2	-104,2	424,9	-5,6	-25,0	734,5	-15,0	-129
2010	462,1	2,1	9,6	424,7	-9,7	-45,8	886,8	-4,0	-36,9	2010	409,6	-1,0	-4,2	407,6	-9,4	-42,3	817,2	-5,4	-46
2011	455,5	0,7	3,0	425,3	-9,6	-45,2	880,8	-4,6	-42,9	2011	379,7	-8,2	-34,1	402,0	-10,6	-47,9	781,7	-9,5	-82
2012	423,6	-6,4	-28,9	429,3	-8,8	-41,2	852,9	-7,7	-70,8	2012	357,7	-13,6	-56,1	390,7	-13,2	-59,2	748,4	-13,3	-118
2013	406,3	-10,2	-46,2	477,7	1,5	7,2	884,0	-4,3	-39,7	2013	317,8	-23,2	-96,0	452,6	0,6	2,7	770,4	-10,8	-93
2014	330,4	-27,0	-122,1	513,9	9,2	43,4	844,3	-8,6	-79,4	2014	277,1	-33,0	-136,7	507,2	12,7	57,3	784,3	-9,2	-79
2015	401,7	-11,2	-50,8	447,8	-4,8	-22,7	849,5	-8,0	-74,2	2015	369,1	-10,8	-44,7	372,0	-17,3	-77,9	741,1	-14,2	-12:
2016	489,4	8,2	36,9	360,6	-23,4	-109,9	850,0	-8,0	-73,7	2016	478,5	15,6	64,7	381,7	-15,2	-68,2	860,2	-0,4	-3
2017	338,6	-25,2	-113,9	644,2	36,9	173,7	982,8	6,4	59,1	2017	313,3	-24,3	-100,5	616,6	37,1	166,7	929,9	7,7	66
2018	471,0	4,1	18,5	230,2	-51,1	-240,3	701,2	-24,1	-222,5	2018	533,6	29,0	119,8	302,4	-32,8	-147,5	836,0	-3,2	-27
2019	460,4	1,7	7,9	378,9	-19,5	-91,6	839,3	-9,1	-84,4	2019	454,5	9,8	40,7	330,2	-26,6	-119,7	784,7	-9,1	-79
2020	459,2	1,5	6,7	407,4	-13,4	-63,1	866,6	-6,2	-57,1	2020	461,3	11,5	47,5	391,1	-13,1	-58,8	852,4	-1,3	-11
2021	373,0	-17,6	-79,5	499,6	6,2	29,1	872,6	-5,5	-51,1	2021	394,7	-4,6	-19,1	484,8	7,8	34,9	879,5	1,8	15
2022	434,0	-4,1	-18,5							2022	376,9	-8,9	-36,9						1

Das WHJ 2022 ist wieder etwas zu trocken, obgleich der Februar 2022 mit ergiebigen Niederschlägen von rd. 150 % über dem langjährigen Monatsmittel sehr nass war, die anderen Monate jedoch defizitär ausfielen.

Das Wasserwirtschaftsjahr 2021 fiel insgesamt ausgeglichener als die Vorjahre aus. Sowohl beim WHJ, als auch beim SHJ 2021 ist gegenüber dem Vorzeitraum eine gegensätzliche Entwicklung eingetreten; so fällt das WHJ 2021 nach 3 überschüssigen WHJ erstmals wieder deutlich defizitär aus und das SHJ 2021 erstmals nach 3 unterdurchschnittlichen SHJ wieder überschüssig.

Das WHJ 2022 liegt etwas unter dem langjährigen Durchschnitt und ist trotz des überaus nassen Februar 2022 als leicht zu trocken zu charakterisieren.

Seit Beginn der Phase geringerer Niederschlagsüberschüsse im Jahre 2009 hat sich ein kumulatives Gesamtniederschlagsdefizit ergeben, welches annähernd einem Jahresniederschlag entspricht.

Im Bereich Obersteinhagen liegen für den Zeitraum 2018-2021 mit -12 % deutlich geringere kumulative prozentuale Defizite vor, als an den Niederschlagsmessstationen Lysimeteranlage Senne (-45%) und Halle-Künsebeck (-34%).

Die Niederschlagsverhältnisse führen dazu, dass weiterhin ausgeprägt defizitäre Grundwasserspeicherverhältnisse und ein deutlich zu niedriges Grundwasserstandsniveau vorliegen, wie es die nach wie vor niedrigen Wasserstände der Referenzmessstellen zeigen (vgl. Kapitel 5.1).

4 Rohwasserfördermengen

Die Standorte der Förderbrunnen sind in den anliegenden Planunterlagen dargestellt. Die Fördermengen des Wasserwerkes Patthorst sind in Anhang 2 tabellarisch und grafisch zusammengestellt. Anlage 1 zeigt im Überblick die wasserwirtschaftlichen Rahmenbedingungen der letzten Jahre seit 2015.

Im aktuellen Berichtsjahr wurde der Brunnen 1 im Zeitraum März bis Juni 2021 zurückgebaut und durch den neu errichteten Ersatzbrunnen 1a ersetzt. Die Inbetriebnahme des Brunnens 1a fand am 16.07.2021 statt. Der Brunnen 4 wurde im September 2021 zurückgebaut und durch den neu errichteten Ersatzbrunnen 4a ersetzt. Die Inbetriebnahme des Brunnens 4a erfolgte am 24.01.2022.

Die Zeitpunkte der vorausgegangenen Brunnenaußer- und Inbetriebnahmen sind nachfolgend tabellarisch zusammengestellt:

Außerbe	triebnahmen	Inbetriebnahmen					
Brunnen Zeitpunkt Außerbetriebnahme		Brunnen	Zeitpunkt Inbetriebnahme für die Trinkwasserversorgung				
		Br. 9	Januar 2004				
Br. 5	Januar 2004						
Br. 6	März 2005						
		Br. 10	August 2018				
		Br. 11	August 2018				
Br. 2	Februar 2019	Br. 2a	21. Februar 2020				
Br. 8	Juni 2020	Br. 8a	06. November 2020				
Br. 1	März - Juni 2021	Br. 1a	16. Juli 2021				
Br. 4	September 2021	Br. 4a	24.Januar 2022				

Zur Förderung werden somit derzeit die Brunnen 1a, 2a, 3 und 4, sowie die Brunnen 7a, 8a und 9 bis 11 genutzt.

Wie die Abbildung 2 zeigt, ist die Förderung am Wasserwerk Patthorst langjährig durch eine sehr gleichmäßige Entnahme ohne große Schwankungen geprägt. Die jährlichen Fördermengen bewegten sich im Zeitraum 2000 bis 2017, auch nach Inbetriebnahme des Brunnens 9, auf einem recht stabilen Niveau von im Mittel rd. 1,0 Mio. m³/a. Mit Inbetriebnahme der Brunnen 10 und 11 im August 2018, erhöhte sich die Gesamtentnahme um rd. 100.000 m³/a und liegt seither bei gut 1,1 Mio.m³/a; die bisherige Maximalentnahme wurde mit 1,17 Mio. m³/a im KJ 2020 gefördert.

Mit 1,1 Mio.m³/a entspricht die Grundwasserentnahme im Kalenderjahr 2021 der durchschnittlichen Entnahme seit 2018; gegenüber dem Vorjahr wurde geringfügig weniger entnommen. Der wasserrechtliche Ausschöpfungsgrad beträgt knapp 90 %. In der brunnenspezifischen Einzelbetrachtung wurde aus dem Brunnen 4 gegenüber dem Vorjahr deutlich weniger entnommen, was durch dessen Außerbetriebnahme und Rückbau ab September 2021 begründet ist. Die Inbetriebnahme des Ersatzbrunnens 4a erfolgte dann erst Ende Januar 2022.

Die Außerbetriebnahme des Brunnens 1 wurde bis zur Inbetriebnahme des Ersatzbrunnens 1a zunächst durch eine temporär gesteigerte Entnahme am Brunnen 2a kompensiert und ab Juli 2021 dann durch eine deutlich angehobene Entnahme aus dem neu errichteten Ersatzbrunnen 1a.

Als Hauptlastbrunnen mit Entnahmen zwischen rd. 145.000 m³/a und 240.000 m³/a werden damit weiterhin die Brunnen 2a, 3, 4 und 11 betrieben. Während die übrigen 5 Brunnen mit deutlich geringeren Entnahmen zwischen rd. 70.000 m³/a (Br.7a, Br.9) und 95.000 m³/a (Br.1/ 1a) gefördert werden.

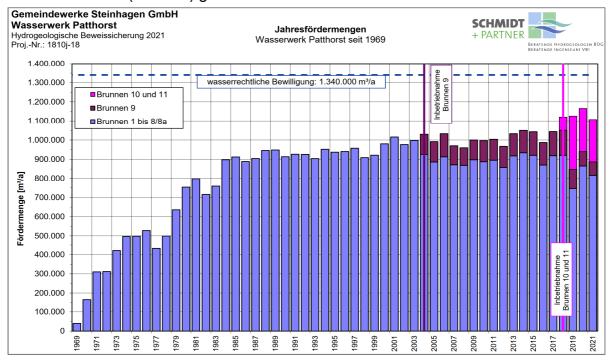
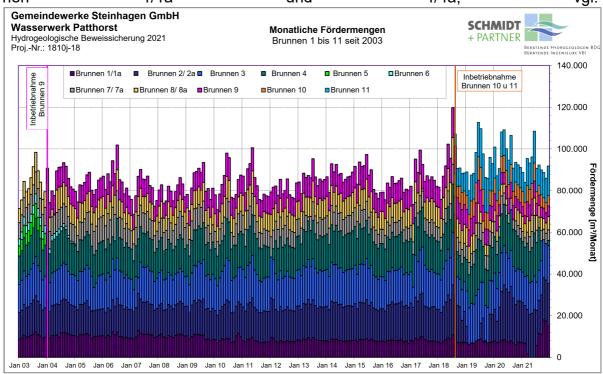
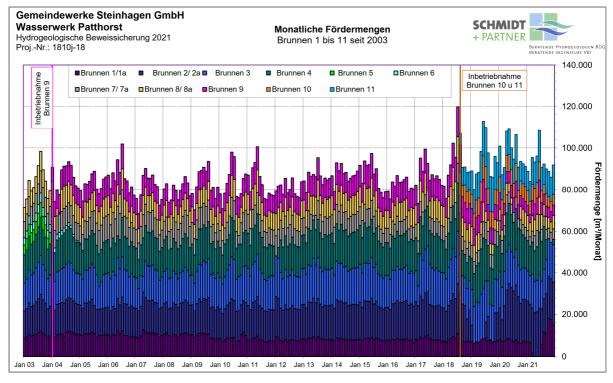


Abbildung 2: Jahresfördermengen am Wasserwerk Patthorst (1969 bis 2021.

Die mittlere monatliche Entnahme der am wenigsten in die Förderung eingebundenen Brunnen 7a bis 10 lag 2021 bei jeweils rd. 6.000 m³. Aus den Brunnen 11, sowie 1/1a wurden rd. 12.000 m³ entnommen und aus den am stärksten geförderten Brunnen 2a bis 4a wurden monatlich durchschnittlich zwischen 15.000 bis 20.000 m³ ent-

nommen (ohne Berücksichtigung der Außer-/ Inbetriebnahme-Phasen an den Brunnen 1/1a und 4/4a, vgl.




Abbildung 3, Anlage 1 und Anh. 2).

In Summe wurden 2021 monatlich rd. 92.000 m² gefördert; der entnahmestärkste Monat war mit knapp 110.000 m³ der Juni 2021. Die Entnahme im stichtagsrelevanten Vormonat September 2021 lag mit rd. 90.000 m³ leicht unter der durchschnittlichen Monatsförderung in diesem Kalenderjahr; hierbei wurden mit Ausnahme des Brunnens 4, der in diesem Monat rückgebaut wurde, alle Brunnen in etwa mit den vorgenannten durchschnittlichen Entnahmemengen gefördert.

BERATENDE HYDROGEOLOGEN BDC BERATENDE INGENIEURE VBI

Seite 15

Abbildung 3: Monatsfördermengen am Wasserwerk Patthorst, differenziert nach Förderbrunnen (2003 bis 2021).

Im Kalenderjahr 2021 entsprach die Jahresentnahme rd. 1,1 Mio.m³/a und damit der durchschnittlichen Entnahme seit 2018 (nach Inbetriebnahme der Brunnen 10 und 11). Das Wasserrecht wurde zu knapp 90% ausgeschöpft. Gegenüber dem Vorjahr 2020, in dem mit 1,17 Mio.m³/a die bisherige Maximalentnahme erfolgte, wurde geringfügig weniger entnommen

Wie geplant wurde der Brunnen 1 2021 durch den ab Juli 2021 in Betrieb genommenen Brunnen 1a ersetzt. Ebenso wurde der Brunnen 4 rückgebaut (September 2021). Der Ersatzbrunnen 4a ging Ende Januar 2022 in Betrieb.

Als Hauptlastbrunnen mit Entnahmen zwischen rd. 145.000 m³/a und 240.000 m³/a werden damit weiterhin die Brunnen 2a, 3, 4 und 11 betrieben. Während die übrigen 5 Brunnen mit deutlich geringeren Entnahmen zwischen rd. 70.000 m³/a und 95.000 m³/a gefördert werden. Die Entnahme an Brunnen 9 lag mit rd. 70.000 m³/a noch einmal geringfügig unter der Vorjahresmenge.

5 Grundwasserstandsentwicklung

Die Stammdaten der Grundwassermessstellen (im Folgenden mit GWM abgekürzt) und Brunnen des Wasserwerks Patthorst sind zusammen mit den Ergebnissen der Stichtagsmessung der Grundwasserstände am 04./10.10.2021 in Anhang 1 beigefügt. Die zeitliche Entwicklung der Grundwasserstände ist den zugehörigen Grundwasserganglinien in Anhang 3 zu entnehmen.

5.1 Referenzmessstellen

Die Grundwasserganglinien der Messstellen 18, 20, 45 und III/3a, welche sich außerhalb des Auswirkungsbereiches der Förderung befinden, sind in Abbildung 4 dargestellt. Die Referenzmessstellen wurden für die Ermittlung der klimatisch bedingten Wasserstandsschwankung genutzt (Kap. 6.1).

Infolge des von einer außerordentlichen Trockenheit geprägten Sommerhalbjahrs 2018 fielen die natürlichen Grundwasserstände deutlich ab. Dieser Prozess setzte sich in den Wasserwirtschaftsjahren 2019 und 2020 in ähnlicher Weise fort. Ausgeglichene Winterniederschläge folgten zu heiße und trockene Sommer, so dass ein Großteil der versickernden Niederschläge in den seit 2018 extrem trockenen Böden zurückgehalten wurden und die Grundwasserstände bis zum Jahresende 2020 zunehmend absanken. An den Messstellen 18 und 45 wurden 2020 die niedrigsten Werte seit Aufzeichnungsbeginn dokumentiert. Lediglich an GWM III/3a blieben die Tiefstwasserstände seit 2018 auf einem etwa gleichbleibenden Niveau.

Durch die erstmals seit 3 Jahren defizitäre Niederschlagsentwicklung im WHJ 2021 erreichen die Höchstwasserstände zu Jahresbeginn 2021 an den Referenzmessstellen das Vorjahresniveau in der Regel nicht wieder. Durch die dann erstmals seit 3 Jahren als überschüssig zu charakterisierenden Niederschlagsverhältnisse im unmittelbar folgenden und auch signifikant kühleren SHJ 2021, sinken die Tiefstwasserstände jedoch nicht bis zum Tiefstwasserstand des Vorjahres ab.

Auch zum Stichtag im Oktober 2021 lagen die Wasserstände an den GWM 18 und 20 daher deutlich - an der GWM 45 zumindest leicht - über dem Vorjahresstichtag. An der GWM III/3a lag der Stichtagswasserstand hingegen etwas unter dem des Vorjahres.

Verglichen mit dem Referenzzustand des Jahres 2003 entsprachen die Wasserstände an den GWM 18, 45 und III/3a annähernd dem Stichtagsniveau 10/ 2003, während sie an der GWM 20 leicht darüber lagen (Kap. 6.1).

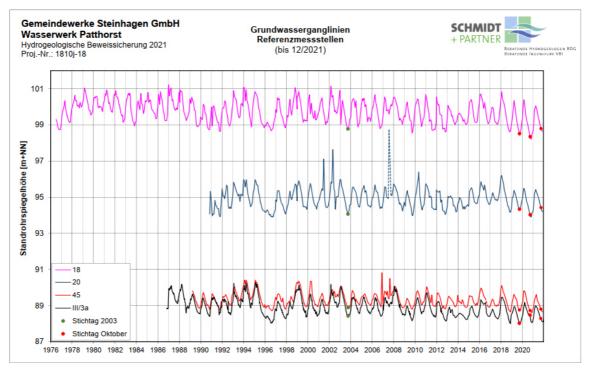
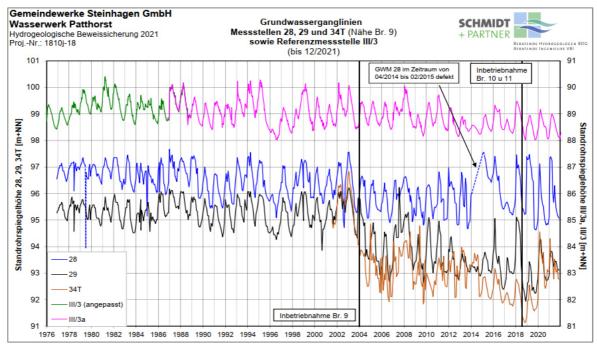


Abbildung 4: Ganglinien der Messstellen 18, 20, 45 und III/3a (1976 bis 2021).


Die Niederschlagsverhältnisse waren im WHJ 2021 erstmals seit 3 Winterhalbjahren deutlich defizitär, weswegen die Höchstwasserstände zu Jahresbeginn 2021 das Vorjahresniveau in der Regel nicht erreichen.

Durch das folgende, seit 3 Jahres erstmals wieder überschüssige und vor allem kühlere SHJ 2021 und die durchschnittlichen Niederschläge im beginnenden WHJ 2022 sinken die Wasserstände im Kalenderjahr 2021 nicht mehr so tief ab wie im Vorjahr, so dass der Grundwasserspeicher im Jahr 2021 keine weitere Zehrung erfahren hat. Das erreichte Grundwasserstandsniveau ist jedoch noch deutlich zu tief.

5.2 Förderbedingt beeinflusste Messstellen

In Abbildung 5 sind die Ganglinien der Messstellen 34T, 28 und 29, welche in der unmittelbaren Umgebung des Brunnens 9 liegen, gemeinsam mit der Referenzmessstelle III/3a dargestellt. Die GWM 34T befindet sich im direkten Brunnenbereich, die GWM 29 liegt etwas südlich in Richtung des nahe gelegenen Brunnen 10 und die GWM 28 deutlich nordöstlich des Brunnen 9. Anhand der Ganglinien ist die starke Absenkung der brunnennahen Wasserstände um 2 bis 3 m nach Inbetriebnahme des Brunnens 9 deutlich erkennbar. Die Ganglinien folgen seitdem nicht mehr ausschließlich den natürlichen jahreszeitlichen Schwankungen. Die GWM 34T, welche die geringste Distanz zum Brunnen aufweist, zeigt dabei den deutlichsten förderbedingten Einfluss.

Abbildung 5: Ganglinien der im Zustrom des Brunnens 9 gelegenen GWM 28, 29 und 34T im Vergleich zur Referenzmessstelle III/3 bzw. III/3a (1976 bis 2021).

Die Entnahme aus dem Brunnen 9 lag 2021 mit rd. 70.000 m³/a noch einmal geringfügig unter der Vorjahresmenge (75.000 m³/a) und stellt die geringste Entnahme seit Förderbeginn im Jahr 2004 dar. Auch an Brunnen 10, welcher vermutlich ebenfalls einen Einfluss auf die GWM 29 ausübt, wurde die Entnahmemenge nochmals reduziert. Neben den klimatischen Aspekten bewirkt daher vornehmlich die Förderreduzierung der letzten beiden Jahre, die durch die anderen Brunnenerneuerungsmaßnahmen ermöglicht wurde, dass das Wasserstandsniveau der brunnennahen Messstellen 29 und 34T gegenüber dem Zeitraum vor 2020 ein entgegen dem klimatischen Trend kontinuierlichen Anstieg des Grundwasserstandsniveaus um rd. 1,0 m zeigt.

Die Wasserstandsentwicklung an der zum Brunnen 9 entfernteren Messstelle 28 weicht seit 2018 durch höhere Maximalwasserstände von den Referenzmessstelle ab. Die Entwicklung ansteigender Tiefstwasserstände ist hier ähnlich wie bei der Referenzmessstelle III/3a seit Ende 2019 zu beobachten.

Die im unmittelbaren nördlichen Zustrombereich zu den Brunnen gelegenen Messstellen 2, 3 und 4 weisen einen förderbedingten Einfluss von bislang rd. 0,5 m – 1m Absenkung auf, der sich seit Mitte der 90-er Jahre langsam durchpaust. Das Grundwasserstandsniveau an diesen Messstellen blieb seitdem bis 2018 auf konstantem Niveau, um danach klimatisch bedingt etwas weiter abzufallen (Anhang 3). Der Anteil der Mehrabsenkung gegenüber dem davor liegenden Zeitraum betrug im Zeitraum 2018 – 2020 rd. 0,25-0,5 m. Im Jahr 2021 hat sich keine Fortsetzung des negativen Trends, sondern ein leichter Anstieg gezeigt.

Eine ähnliche Entwicklung zeigen die Messstellen im unmittelbaren zentralen Absenkungsfeld (13, 35F, 7, 8, 11 und 12). Hier hat der förderbedingte Einfluss dazu geführt, dass das unbeeinflusste Grundwasserstandsniveaus Anfang der 70-er Jahre um rd. 1,0 – 1,5 m abgesenkt wurde (Anhang 3). Hier nimmt die Mehrabsenkung des Zeitraumes 2018-2020 rd. 0,5 m ein. Im Jahr 2021 hat sich keine Fortsetzung des negativen Trends, sondern ein leichter Anstieg gezeigt.

Durch die geringere Förderung der Brunnen 9 und 10 in den Jahren 2020 und 2021 ist das Wasserstandsniveau in den nahegelegenen Grundwassermessstellen 29 und 34T gegenüber dem Zeitraum vor 2020 insgesamt um rd. 1,0m angestiegen.

Die im zentralen Brunnenfeld sowie im unmittelbaren nördlichen Zustrom zu den Förderbrunnen gemessenen Grundwasserstände zeigen eine Verstärkung der förderbedingten Absenkung im Zeitraum 2018-2020. Im Jahr 2021 hat sich hier keine Fortsetzung des fallenden Trends, jedoch eine Fortdauer des niedrigeren Grundwasserstandsniveaus gezeigt.

5.3 Grundwasserstandsentwicklungen an Messstellen im Bereich der landschaftsökologischen Probeflächen

Auf Antrag vom 06.04.2011 wurde in Form des 1. Änderungsbescheides vom 11.04.2011 (Az.: 54.1-83.20 GT/St 1) der Umfang der vegetationskundlichen Beweissicherung auf den Beobachtungsflächen 1, 3n, 4 und 5n auf fünfjährlich, beginnend in 2015, reduziert (Abbildung 6). Die weitere Begutachtung der Beobachtungsfläche 2 gilt infolge von Pflegemaßnahmen als entbehrlich.

In Abstimmung mit der Bezirksregierung Detmold wurde der Bericht zum landschaftsökologischen Monitoring aus organisatorischen Gründen auf das Kalenderjahr 2017 verschoben. Die nächste vegetationskundliche Untersuchung wird folglich im Jahr 2022 durchgeführt. Die Aufnahme der Vegetation erfolgte zwischen Juni und August 2017 /2/.

/2/ KORTEMEIER & BROKMANN (2018): Vegetationskundliche Begleituntersuchung zum Wasserrechtsantrag "Wasserwerk Patthorst". Monitoringbericht 2017; Herford (unveröffentl. Gutachten).

Zusammenfassend kam der Bericht zum Ergebnis, dass die im Rahmen der vegetationskundlichen Begleituntersuchung des Betrachtungsjahres 2017 /1/ festgestellten Veränderungen der mittleren Feuchtezahl auf einigen Beobachtungsflächen nicht zwangsläufig auf die Wassergewinnung am Wasserwerk Patthorst, sondern vielmehr auf veränderte Lichtverhältnisse (Waldflächen) bzw. eine wieder aufgenommene Grünlandnutzung (Grünlandfläche) zurückzuführen waren.

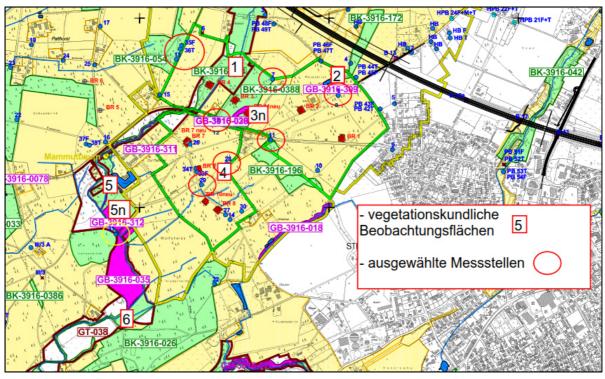


Abbildung 6: Ausgewählte Messstellen mit Lagebezug zu den Beobachtungsflächen 1 bis 6.

Zusätzlich erfolgt die Betrachtung der Grundwasserstandsentwicklungen im Umfeld der Beobachtungsflächen weiterhin jährlich im Rahmen der hydrogeologischen Beweissicherung, also auch im vorliegenden Berichtsjahr 2021.

Zur Bewertung der lokalen Grundwasserstandsänderungen werden die Ganglinien der in Abbildung 6 gekennzeichneten Messstellen herangezogen, welche die folgenden Lagebezüge zu den Beobachtungsflächen besitzen:

GWM 13, 35F: Beobachtungsfläche 1
GWM 7, 8: Beobachtungsfläche 2

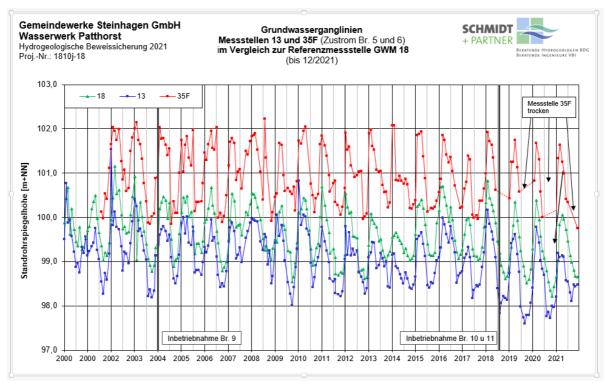
(nicht mehr Teil der Beweissicherung)

GWM 11, 12: Beobachtungsfläche 3n GWM 28, 29: Beobachtungsfläche 4 GWM 31: Beobachtungsfläche 5n

Die Wasserstandsganglinien (vgl. Abb. 7 bis 9) werden insbesondere im Hinblick auf die Grundwasserstandsänderungen im Zeitraum seit dem Jahr 2000 ausgewertet, um eine mögliche Veränderung durch die Inbetriebnahme des Brunnens 9 im Jahr 2004 näher beurteilen zu können. Zwischenzeitlich hat sich durch die Inbetriebnahme der Ergänzungsbrunnen 10 und 11 sowie die Ertüchtigung der bestehenden Brunnen

eine Veränderung der Entnahmekonstellation ergeben, die ebenfalls zu berücksichtigen ist.

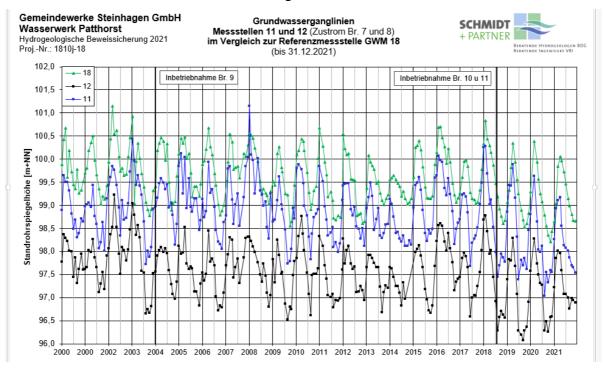
Aus klimatischer Sicht waren die Wasserwirtschafts- bzw. Winterhalbjahre in diesem Zeitraum einerseits durch extrem feuchte Verhältnisse und hohe Grundwasserstände in den Jahren 2002, 2007 und 2008, sowie andererseits durch sehr trockene Bedingungen und niedrige Grundwasserstände in den Jahren 2003, 2006 und 2009 bis 2015 sowie 2017 und in der 2. Jahreshälfte 2018 geprägt. Im Jahr 2019 sowie auch 2020 waren die Niederschläge im Winterhalbjahr wiederum ausgeglichen, jedoch blieben die Sommer zu trocken und zu heiß, so dass ein Großteil der versickernden Niederschläge in den extrem trockenen Böden zurückgehalten wurde. Die Situation im WWJ 2021 stellte mit einem zu trockenen WHJ und einem feuchteren und vor allem kühleren Sommerhalbjahr ein gegenläufiges Verhalten dar, was dazu führte, dass sich der Trend abnehmender Grundwasserstände nicht mehr fortsetzte. Insgesamt liegt immer noch ein niedriges Grundwasserstandsniveau vor.


Der Verlauf der Wasserstandsganglinien im Bereich der Beobachtungsflächen war auch im aktuellen Betrachtungsjahr in etwa mit den Referenzmessstellen vergleichbar. Im Nachfolgenden wird daher lediglich auf Abweichungen näher eingegangen:

Beobachtungsfläche 1

Zur Bewertung der Wasserstandsentwicklung an der **Beobachtungsfläche 1** werden die Messstellen 35F und 13 herangezogen (Abbildung 7). Beide Messstellen liegen nordwestlich des Brunnens 4 sowie im direkten Zustrombereich der außer Betrieb befindlichen Brunnen 5 und 6 (Abbildung 6).

Aufgrund des defizitären WHJ 2021 erreichen die Höchstwasserstände der Messstellen 13 und 35F das Niveau des Vorjahres nicht wieder; diese Entwicklung zeigt sich in Vergleichbarer Form an der Referenzmessstelle 18.


Abbildung 7: Grundwasserstandsganglinien der GWM 13 und 35F bei Beobachtungsfläche 1 im Vergleich zur Referenzmessstelle GWM 18 (2000 bis 2021).

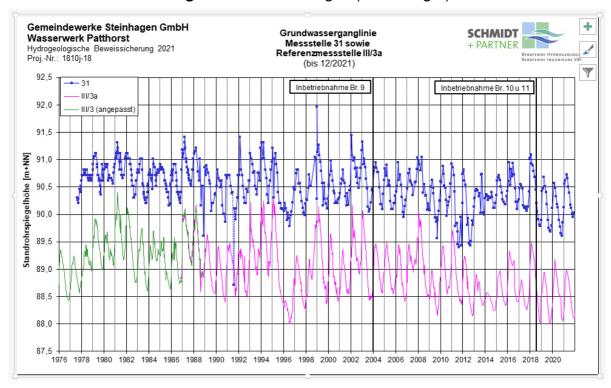
Da die Messstelle 35F seit 2018 im Sommer zuletzt häufig trocken fällt, lässt sich die Entwicklung der Tiefstwasserstände derzeit nur anhand der GWM 13 beurteilen, die wie die Referenzmessstelle im Jahr 2021 einen erkennbaren Anstieg der tiefsten Wasserstände gegenüber dem Vorjahr zeigt, was auf den niederschlagsreicheren und kühleren Sommer zurückgeführt werden kann. Eine Fortdauer, des seit 2018 anhaltenden Trends zu fallenden Wasserständen ist in 2021 nicht zu beobachten.

Beobachtungsfläche 3n

Die Grundwasserstandsentwicklung an der **Beobachtungsfläche 3n** wird durch die GWM 11 und 12 repräsentiert, welche sich im Zustrom der Brunnen 7 bis 10 befinden (Abbildung 6). In Abbildung 8 sind die Ganglinien der Messstellen 11 und 12 gemeinsam mit der Referenzmessstelle 18 dargestellt.

Abbildung 8: Grundwasserstandsganglinien der GWM 11 und 12 bei Beobachtungsfläche 3n im Vergleich zur Referenzmessstelle GWM 18 (2000 bis 2021).

Mit Inbetriebnahme der Brunnen 10 und 11 ab Mitte 2018 setzt eine deutliche abfallende Entwicklung der Grundwasserstände ein. Mit der Verringerung der Entnahme in den Brunnen 9 und 10 steigen die Wasserstände ab 2020 deutlich an (vgl. Kap. 5.2).


Beobachtungsfläche 4

Anhand der nahe des Brunnens 9 gelegenen Messstellen 28 und 29 kann die Wasserstandsentwicklung an der **Beobachtungsfläche 4** betrachtet werden. Die Wasserstände der o.g. Messstellen werden in Kap. 5.2 (Abbildung 5). näher thematisiert. Durch die geringere Förderung der Brunnen 9 und 10 hat sich das Absenkungsgebiet verkleinert, so dass es an der Messstelle 28 wie im Vorjahr nur noch zu geringfügigen förderbedingten Auswirkungen kommt.

Beobachtungsfläche 5n

Im Abstrom der Brunnen liegt die GWM 31, welche die Wasserstandsentwicklung im Umfeld der **Beobachtungsfläche 5n** wiedergibt (Abbildung 9).

Abbildung 9: Grundwasserstandsganglinie der GWM 31 bei Beobachtungsflächen 5 und 5n sowie der Referenzmessstelle III/3a bzw. III/3 (angepasst) (1976 bis 2021).

Die Wasserstandsentwicklung an der GWM 31 orientiert sich grundlegend an den Ganglinien der Referenzmessstellen. Eine Ausnahme bildet der Zeitraum 2011-2013, wo zeitweise deutlich tiefere Wasserstände gemessen wurden, die eine Fremdbeeinflussung zu sein scheinen.

Seit 2014 gleicht der Verlauf wieder vollständig dem der Referenzmessstelle, so dass eine förderbedingte Beeinflussung des Wasserstandsverhaltens durch die Brunnen des Wasserwerkes Patthorst hier nicht zu beobachten ist.

Im Umfeld der landschaftsökologischen Beobachtungsflächen waren auch im aktuellen Betrachtungsjahr überwiegend keine förderbedingten langanhaltenden, abfallenden Tendenzen in der Wasserstandsentwicklung an den Flächen 1 und 5 zu beobachten. Im Umfeld der Förderbrunnen werden die natürlichen Wasserstandsschwankungen teilweise durch die Grundwasserentnahme des Wasserwerkes Patthorst überlagert. So zeigt sich bei der Beobachtungsfläche 4 eine deutliche Beeinflussung durch die Brunnen 9 und 10 an der GWM 29, an

der GWM 28 fällt sie weniger stark aus. Auch an der Beobachtungsfläche 3n lässt sich 2018 – 2019 ein förderbedingt abfallende Tendenz aufgrund der Inbetriebnahme des Brunnens 11 feststellen. Durch die Vergleichmäßigung der Entnahme und eine hiermit einhergehende Verringerung der spezifischen Förderung an den Brunnen 9, 10 und 7 1 hat sich im WWJ 2021 der abfallende Trend nicht fortgesetzt, sondern ist eher durch ein ansteigendes Grundwasserstandsniveau gekennzeichnet.

Die gem. Nebenbestimmung 14 zu erfolgende vegetationskundliche Beweissicherung kann aus Sicht des unterzeichnenden Büros weiterhin im angegebenen Umfang des 1. Änderungsbescheides fortgeführt werden Nach der letzten Begehung im Jahre 2017 ist folglich im Jahre 2022 die nächste vegetationskundliche Untersuchung der Probeflächen durchzuführen.

5.4 Grundwassergleichenpläne 10/2021

Zur Konstruktion der im Plan 0 dargestellten Grundwasserströmung im Monat Oktober 2021 wurden die Ergebnisse der Stichtagsmessung der Wasserstände am 04./10.10.2021 im Westen des Blattgebietes, durchgeführt von den Technischen Werke Osning GmbH (Umfeld der Wasserwerke Bokel und Tatenhausen), sowie im Bereich des Wasserwerkes Patthorst, durchgeführt von den Gemeindewerken Steinhagen GmbH, verwendet. Die Grundwasserströmung im Entnahmestockwerk (unterer Hauptgrundwasserleiter) des Wasserwerkes Patthorst ist im Detail in Plan 1 dargestellt.

Die Grundwasserströmung verläuft generell vom Rand des Teutoburger Waldes im Nordosten nach Südwesten in Richtung des Zentrums des Münsterländer Kreide-Beckens. Die Standrohrspiegelhöhen fallen von rd. 125 m+NN (Rand des Hauptgrundwasserleiters im äußersten Nordosten) auf rd. 75 m+NN südwestlich des Wasserwerks Bokel ab. Das Grundwassergefälle ist im Zustrom zum Wasserwerk Patthorst mit ca. 1,75 % deutlich steiler, als im weiteren Abstrom in Richtung Brockhagen mit etwa 1 %, wobei der südwestliche Teil (nordöstlich von Brockhagen) mit rd. 0,4 -% ein wesentlich geringeres Gefälle aufweist.

Die stichtagsrelevante Monatsentnahmemenge des Wasserwerkes Patthorst im September 2021 entsprach 90.000 m³/Monat, was etwas unter der monatlichen Durchschnittsentnahme des Kalenderjahres 2021, sowie geringfügig unter dem Vorjahresmonat liegt (Sept. 2020: rd. 91.000 m³). In Bezug auf den für die Konstruktion des Referenzzustandes relevanten Vormonat September 2003 (89.640 m³) ist die Entnahme vergleichbar.

Bedingt durch die weit auseinanderliegende Anordnung der Brunnen weist das Wasserwerk Patthorst im Allgemeinen ein großes Einzugsgebiet auf. Zur unmittelbaren Stichtagsmessung im Oktober 2021 waren alle Brunnen außer Betrieb; die aus den Wasserständen erkennbaren Restabsenkungen wurden bei der Konstruktion des Einzugsgebietes jedoch berücksichtigt. Das Einzugsgebiet erstreckt sich aufgrund dessen weiter nach Osten als zum Vorjahresstichtag (Restabsenkung am Brunnen 1a), zu dem der Brunnen zwar ebenfalls außer Betrieb war, aber keine Restabsenkung aufwies.

In den anderen Bereichen ist das Einzugsgebiet recht ähnlich ausgebildet wie zum Vorjahresstichtag; lediglich am Standort des Brunnens 7a, bei dem keine nennenswerte Restabsenkung gemessen wurde, erstreckt sich das Einzugsgebiet etwas weniger weit in westliche Richtung. Das Gesamteinzugsgebiet der Brunnen des Wasserwerkes Patthorst verblieb im Jahr 2021 vollständig innerhalb des im Februar 2020 neu festgesetzten Wasserschutzgebietes.

Alle Brunnen waren zur Stichtagsmessung 10/2021 außer Betrieb, bestehende Restabsenkungen wurden aber bei der Konstruktion des Einzugsgebietes berücksichtigt. Das Einzugsgebiet erstreckt sich daher oberhalb des Brunnenstandortes 1a deutlich weiter nach Osten als zum Vorjahresmonat. In den anderen Bereichen ist es jedoch recht ähnlich ausgebildet und verbleibt vollständig innerhalb der Grenzen des seit Februar 2020 bestandskräftig ausgewiesenen Wasserschutzgebietes.

6 Klimakorrektur und Grundwasserdifferenzen

6.1 Klimatische Korrektur des Grundwasserstandes

Zur Darstellung der förderbedingten Beeinflussung der Grundwassermorphologie im Umfeld des 2004 neu errichteten Brunnens 9 ist der Vergleich mit einem unbeeinflussten Zustand (Referenzzustand) erforderlich, der sich auch dazu eignet, die Auswirkungen der im August 2018 in Betrieb gegangenen Brunnen 10 und 11 zu bewerten. Dazu wird die hydraulische Potentialverteilung zum Stichtag im Oktober 2003 herangezogen, an dem die Brunnen 9, 10 und 11 noch nicht in Betrieb waren. Da das allgemeine Wasserstandsniveau zu den beiden Vergleichsstichtagen nicht äquivalent war, wird vor der Darstellung der Grundwasserdifferenzen eine Korrektur der Standrohrspiegelhöhen auf Grundlage von Wasserstandmessungen an unbeeinflussten Referenzmessstellen durchgeführt.

Zur Bewertung der klimatischen Schwankungen wurden die langjährigen Messreihen der Wasserstände an den Grundwassermessstellen 18, 20, 32, III/3a und 45, die sich außerhalb bzw. am Rand der Auswirkungsreichweite des Wasserwerks befinden, herangezogen. Unter Zugrundelegung dieser Referenzmessstellen wurden die in der Tabelle 2 aufgeführten Abweichungen der Standrohrspiegelhöhen ermittelt.

Gemäß den in Tabelle 2 aufgeführten Differenzenbeträge zwischen den Grundwasserstandsniveaus zu den Stichtagen im Oktober 2003 bzw. Oktober 2021 und dem langjährigen Mittelwert ergeben sich Korrekturbeträge, um welche die Grundwasserstände vor der Bewertung der förderbedingten Auswirkungen zu korrigieren sind.

Tabelle 2: Klimatisch bedingte Abweichung an den Referenzmessstellen im Oktober 2021. **Unbeeinflusste Referenzmessstellen mit klimatisch bedingter Abweichung für Oktober 2021**

Bez. d. Grundwassermessstelle	18	20	III/3a	45
GOK [m+NN]	101,11	98,42	91,89	96,31
MP [m+NN]	101,84	99,17	91,71	96,81
Mittelwert Gesamtzeitraum	99,79	94,93	89,01	89,35
Wst. 10/2003 (Referenzzustand)	98,78	94,07	88,43	88,90
Wst. 10/2021	98,80	94,43	88,29	88,81
Differenz 10/03 - Mittel ges	-1,01	-0,86	-0,58	-0,45
Differenz 10/21 - Mittel ges	-0,99	-0,50	-0,72	-0,54

(Differenzen: minus = tiefer als Bezugswert, + = höher als Bezugswert)

Auswahlmessstellen Abweichung 10/03 =	-0,72
Auswahlmessstellen Abweichung 10/21 =	-0,69
Differenz 10/21 - Bezugszeitpunkt 10/03 =	0,04

Im Oktober 2003 lagen die durch die Förderung unbeeinflussten Bereiche des Untersuchungsgebietes durchschnittlich 0,72 m unter dem langjährigen Mittelwasserstand. Das im Oktober 2021 ermittelte Grundwasserstandsniveau an den Referenzmessstellen lag um 0,69 m unter dem langjährigen Mittel und somit lediglich um 0,04 m über dem Bezugsniveau des Jahres 2003. Auf eine klimatische Korrektur kann daher anders als in den beiden Vorjahren verzichtet werden.

Da das im Oktober 2021 ermittelte Grundwasserstandsniveau 0,04 m über dem Bezugsniveau lag, wurde bei der Konstruktion der förderbedingten Absenkung zum Stichtag im Oktober 2021 auf eine Korrektur der klimatisch bedingten Schwankung verzichtet.

6.2 Grundwasserdifferenzenplan

Die Grundwasserstandsdifferenzen zwischen der Stichtagsmessung im Oktober 2021 und dem im aktuellen Betrachtungsjahr aktualisiertem Referenzzustand im Oktober 2003 sind in Plan 2 sowie als Detaildarstellung im Plan 2a als Isolinien abgebildet. Damit wird insbesondere die Veränderung der hydraulischen Potentialverteilung nahe des Brunnens 9 und der neu errichteten Brunnen 10 und 11 dokumentiert.

An den Brunnen 5 und 6 zeigt der Vergleich der Differenzenpläne eine Aufhöhung des Wasserstandes, da diese zum Stichtag 10/2003 noch gefördert haben, seit 2004 bzw. 2005 jedoch nicht mehr betrieben werden.

Da zum Zeitpunkt der Stichtagsmessung 2021 alle Brunnen vorübergehend außer Betrieb waren und nur lediglich Restabsenkungen aufwiesen, wurden hier höhere Wasserstände dokumentiert, als es im Förderbetrieb der Fall wäre. Mit Ausnahme der Brunnen 9, 10 und 11, die zum Stichtag 2003 noch nicht im Betrieb waren, zeigen sich daher auch an allen Brunnenstandorten leichte Aufhöhungen der Wasserstände. An Brunnen 4a, 7a und 8a war die Fördermenge im stichtagsrelevanten Vormonat September 2021 zudem deutlich geringer als im September 2003.

Förderbedingte Absenkungen treten somit ausschließlich an den erst nach 2003 errichteten Brunnen 9, 10 und 11. Die maximalen Absenkungsbeträge im unmittelbaren Nahbereich der Brunnen betrugen hierbei 1,0 bis 2,0 m (Brunnen 9 und 10), bzw. 0,50 und 0,75 m (Brunnen 11).

Gegenüber dem Vorjahresstichtag fällt das bewertungsrelevante Absenkungsgebiet >25 cm gegenüber dem Vorjahr deutlich kleiner aus und bleibt im Bereich der südlich gelegenen Brunnengruppe 8a bis 10 vollständig auf den Bereich der Wasserschutzzone II beschränkt, sowie am Brunnen 11 auf einen Radius von maximal 70 m um den Brunnenstandort.

Die nordwestlich des Brunnens 9 gelegene Reithalle wird weder von der 0,15 m-Absenkungslinie (Nulllinie), noch von der bewertungsrelevanten 0,25 m-Linie erreicht. Auch das Gehöft Brinkmann südlich des Brunnens 11 liegt – anders als im Vorjahr-wieder vollständig außerhalb der Auswirkungsreichweite.

Da alle Brunnen zum Stichtag 10/ 20021 außer Betrieb waren, traten förderbedingte Absenkungen ausschließlich im Nahbereich der Brunnen 9, 10 und 11 auf, die zeitlich nach dem Vergleichsstichtag 10/2003 in Betrieb genommen wurden.

Die Restabsenkungen bleiben im Bereich der Brunnengruppe 8a bis 10 auf den Bereich der Wasserschutzzone II beschränkt. Am Standort des Brunnens 11 erstrecken sie sich auf einen Bereich von maximal 70 m um den Brunnen.

Die Bewertung ist aufgrund dessen, dass nur ein Teil der Brunnen in Betrieb waren nur eingeschränkt möglich. Um ein vollständiges Bild über die förderbedingte Absenkung und die Geometrie des Einzugsgebietes zu erhalten, ist daher darauf zu achten, dass die Stichtagsmessung möglichst bei vollständigem Brunnenbetrieb und zeitgleich erfolgt.

7 Entwicklung der Grundwasserbeschaffenheit

Die Ergebnisse der hydrochemischen Analysen seit 2019 sind in Anhang 5 tabellarisch und grafisch für die Brunnen 1 bis 11 sowie das Mischwasser der Brunnen am Eingang und am Ausgang des Wasserwerks zusammengestellt. Eine tabellarische Zusammenstellung der hydrochemischen Analysen seit 2014 ist dem Bericht des Kalenderjahres 2019 zu entnehmen.

Die Rohwasseranalytik erfolgte im April 2021 an den Brunnen 4a, 8a und 10. Die Brunnen 1a, 3, 7a, 9 und 11 wurden im September beprobt.

Die **elektrische Leitfähigkeit** als Summenparameter des Gesamtlösungsinhaltes bewegt sich im Zeitraum der letzten 10 Jahre in einer Spannbreite zwischen rd. 440 μ S/cm und 580 μ S/cm. Die geringsten Leitfähigkeiten weisen die Wässer der Brunnen 9 und 10 auf (440 bis 500 μ S/cm), während an den Brunnen 1, 2/2a und 8/8a geringfügig höhere Werte dokumentiert werden (i.d.R. 520 bis 580 μ S/cm).

Die zeitlichen Entwicklungen deuten bei Schwankungen weitestgehend auf gleichbleibende hydrochemische Verhältnisse hin. Die bis 2013 zu beobachtende leicht fallende Tendenz korrespondierte mit sinkenden Sulfat- und Nitrat-Gehalten. In den letzten Jahren ist eine eindeutige Korrelation zwischen der Entwicklung der elektrischen Leitfähigkeit und der Konzentrationsentwicklung der übrigen Hauptparameter (Natrium, Chlorid, Calcium, Sulfat und Nitrat) nicht mehr so eindeutig erkennbar.

Die **Calcium-Gehalte** zeigen abgesehen von einzelnen Jahren, in denen es an einigen Brunnen zu etwas deutlicheren Abweichungen kommt (z.B. Brunnen 2/2a in 2019, oder Brunnen 7 in 2014) eine recht stabile Entwicklung innerhalb der bisherigen Schwankungsbreite ohne andauernde eindeutig steigende oder fallende Tendenzen. Mit 85 bis 100 mg/l weist der Brunnen 8a die höchste und der Brunnen 9 mit 75,0 mg/l bis 85 mg/l die geringste Calcium-Konzentration auf.

Die **Sulfat**-Konzentrationen zeigten an den einzelnen Brunnen über den Gesamtzeitraum bis 2015 eine leicht abfallende Tendenz und seither in der Regel gleichbleibende Gehalte. Leicht steigende Sulfatgehalte zeigten sich zwar seit 2014/ 2015 an den Brunnen 3 und 8/8a; einzig der Brunnen 7 aber zeigte in den letzten 2 Jahren einen etwas merklicheren Anstieg von zuvor rd. 50 mg/l auf zuletzt gut 65 mg/l, womit die Sulfat-Konzentration an allen Brunnen aber weiterhin deutlich unterhalb des Grenzwertes gem. TrinkwV (250 mg/l) lag.

Die Entwicklung der **Natrium**-Konzentrationen stellt sich ausgesprochen stabil dar. Interpretierbare Tendenzen sind nicht abzuleiten. Die Gehalte liegen zwischen rd. 10 mg/l und maximal 20 mg/l und demnach deutlich unterhalb des Grenzwertes gem. TVO von 200 mg/l.

Die **Kalium**-Konzentrationen liegen zwischen rd. 1,0 mg/l und 4,0 mg/l. Die Schwankungsbreite ist sehr gering. Auch wenn die Kaliumgehalte an Brunnen 9 seit Messbeginn von rd. 2 mg/l auf derzeit rd. 3,5 mg/l leicht zugenommen haben, sind Tendenzen in der Konzentrationsentwicklungen für diesen Parameter so gut wie nicht festzumachen und wirklich deutliche Veränderungen zeigten sich bislang nicht.

Die **Nitrat**-Konzentrationen an den Brunnen zeigten in der Regel bis 2015/ 2016 einen leichten Rückgang und seither ein tendenziell gleichbleibendes Niveau. Ausgenommen Brunnen 7, bei dem die Gehalte weiterhin leicht absinken. Durch die Außerbetriebnahme/ Inbetriebnahme des Ersatzbrunnens 8/8a kam es an diesem Brunnen im Zeitraum 2019 bis 2020 zu einer stärker schwankenden Entwicklung. Seit der Brunnen 8a in den regulären Betrieb eingebunden ist, weist er Nitratgehalte von rd. 27 mg/l auf (Kalenderjahr 2021).

Grundwässer, welche geringen anthropogenen Einflüssen unterliegen, weisen im Allgemeinen unter 20 mg/l auf, höhere Nitrat-Gehalte können ein Hinweis auf Beeinflussung durch landwirtschaftliche Nutzungen sein. Am Wasserwerk Patthorst liegen die Nitrat-Konzentrationen bereits langjährig in der Regel zwischen 15 und 30 mg/l, bzw. im Mittel bei rd. 25 mg/l und damit deutlich unter dem Grenzwert gem. TrinkwV von 50 mg/l.

BERATENDE HYDROGEOLOGEN BDG BERATENDE INGENIEURE VBI

Seite 32

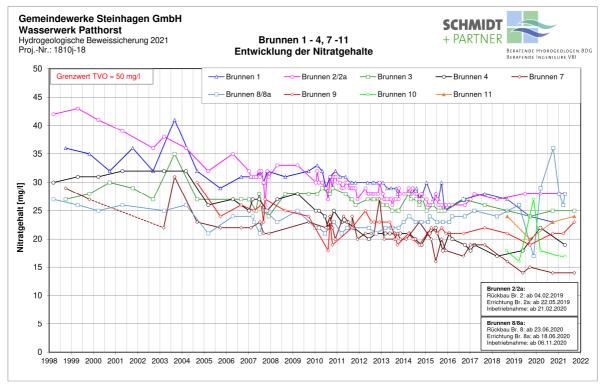


Abbildung 10: Nitrat-Konzentrationen in den Brunnen 1 bis 11 (1998 bis einschl. 2021).

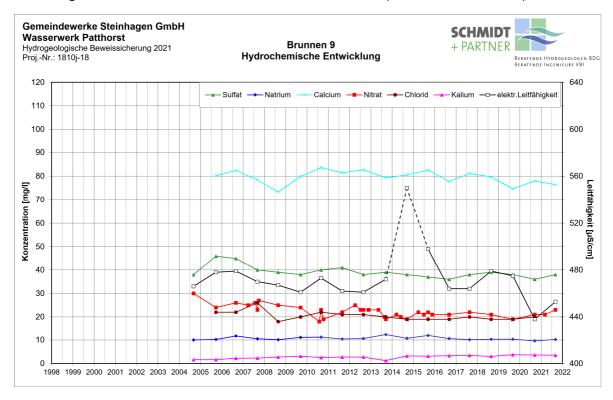


Abbildung 11: Entwicklung hydrochemischer Parameter an Brunnen 9 (2004 bis einschl. 2021).

Die zeitliche Entwicklung der hydrochemischen Parameter an **Brunnen 9** zeigt weiterhin einen weitgehend konstanten Verlauf (Abb. 11). Die Konzentrationen der Hauptparameter zeigen in der Regel nur geringe Schwankungsbreiten. Eindeutige tendenzielle Entwicklungen sind nicht festzustellen. Wie bereits in den Vorberichten bemerkt, korreliert die Entwicklung der elektrischen Leitfähigkeit zeitweise (Jahre 2015 und 2015, sowie 2020) nicht mit der Entwicklung der übrigen Parameter, da diese auf einem weitgehend konstanten Niveau verblieben. Die Messung ist daher zeitweise unplausibel, oder müsste sich durch andere Parameter (z.B. Hydrogenkarbonat erklären, die nicht dauerhaft analysiert wurden).

Zur Überschreitung der Grenzwerte gemäß TrinkwV kam es im aktuellen Berichtsjahr 2021 nicht. Bewertungsrelevante bakteriologische Verunreinigungen wurden im aktuellen Betrachtungsjahr nicht festgestellt. PAKs sowie PBSM verblieben im Rohmischwasser unterhalb der jeweiligen Nachweisgrenze. Die am Wasserwerksausgang erfolgte Untersuchung auf CKW erbrachte ebenfalls keine Nachweise.

Die Ergebnisse der Wasseranalysen belegen weiterhin eine weitestgehend ausgeprägte Stabilität der Grundwasserbeschaffenheit an allen Brunnen des Wasserwerkes Patthorst; zu Schwankungen kommt es in der Regel nur kurzzeitig in Inbetriebnahmephasen von Ersatzbrunnen. Lediglich am Brunnen 7a zeigt sich seit 2020 eine leichte Zunahme der Sulfatkonzentration bei jedoch nach wie vor geringem Konzentrationsniveau (<70 mg/l).

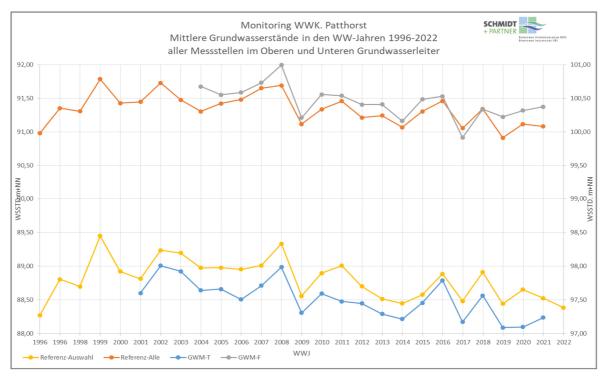
Die Grenzwerte der TrinkwV wurden alle eingehalten. Eine Veränderung der Rohwasserbeschaffenheit durch die Inbetriebnahme des Brunnens 9 sowie Brunnen 10 und 11 ist anhand der vorliegenden Analysenergebnisse weiterhin nicht zu erkennen. Gehalte an anthropogenen Spurenstoffen werden nicht nachgewiesen.

8 Ausblick

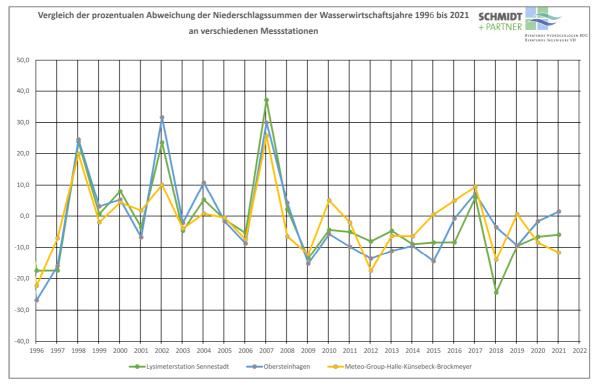
Für eine tendenzielle Bewertung der Entwicklung sowie der Prognose der zukünftigen Entwicklung eignet sich das dichte und langzeitlich gemessene Grundwassermessstellennetz hervorragend.

Für den Bereich des Wasserschutzgebietes Patthorst wurden alle Grundwasserstandsmessungen des Monitoring WWK. Patthorst gegliedert in den oberflächennahen (wo verbreitet) und den tiefen Grundwasserleiter (Förderhorizont) bezogen auf den Mittelwert des Wasserwirtschaftsjahres (Nov-Oktober) für den Kernzeitraum 2002 – 2021 ausgewertet. Die Auswertung umfasst 43 Grundwassermessstellen, für die seit 2002 vergleichbare Zeitreihen vorhanden sind. Eine länger zurückreichende Auswertung verringert die Anzahl der Messstellen sowie die hydrostatistische Aussagequalität. Diese wurde daher nur für die LGD-Referenz-Messstellen (603, 604, 606, 608 und 205F) durchgeführt. Um einen ersten Eindruck der Entwicklung im WWJ 2022 zu erhalten, wurde die bis zum Juli 2022 vorliegende Datengrundlage der LGD-Referenz-Messstellen (Auswahl) mit einbezogen.

Ergänzt wird die Betrachtung durch die Abweichung der mittleren Niederschlagshöhe in den Messstellen Obersteinhagen, Sennestadt und der privaten Messstation der Meteo-Group in Halle Künsebeck für die Wasserwirtschaftsjahre des gleichen Zeitraums. Durch die Darstellung der Abweichung der einzelnen Wasserwirtschaftsjahre zum Mittelwert des Gesamtzeitraumes ergeben sich vergleichbar darstellbare Ergebniswerte. Die Datengrundlagen sind als Grafiken der Anlage 2 beigefügt.


Die Entwicklung im Oberen und Unteren Grundwasserleiter im Einzugsgebiet des WWK. Patthorst stimmt erstaunlich gut mit der Entwicklung der unbeeinflussten Referenz-Messstellen überein (Abb. 12). Erkennbar ist ein seit 2009 deutlicher abfallender Trend sowohl der Höchst- als auch der Niedrigstwasserstände, welches im tiefen Grundwasserleiter im WWJ 2019 sein niedrigstes Niveau erreicht hat und im flachen Grundwasserleiter bereits im WWJ 2017. 2020 und 2021 sind leicht ansteigende Tendenzen im Einzugsgebiet des WWK Patthorst erkennbar, die bei den Referenz-GWM in 2021 nicht auftreten. Für 2022 ist grundsätzlich wieder mit einem Absinken des Grundwasserstände auf das Niveau von 2019 oder sogar tiefer zu rechnen. Ein ähnlich tiefes Niveau wurde in den Referenz-GWM im WWJ 1996 erreicht.

Die Entwicklung der Niederschlagshöhen verläuft ähnlich, jedoch zeitlich versetzt, was plausibel ist, da eine niederschlagsbürtige Grundwasserstandsveränderung erst nach einem längeren Zeitraum der Versickerung in den Grundwasserleiter bemerkbar macht. Auch hier fällt auf, dass die Periode ab 2009 deutlich verminderte Niederschläge aufweisen. Wie bereits in Kap. 3 beschrieben beläuft sich das Niederschlagsdefizit seit 2009 annähernd auf einen Gesamtjahresniederschlag.



BERATENDE HYDROGEOLOGEN BDG BERATENDE INGENIEURE VBI

Seite 35

Abbildung 12: Entwicklung des mittleren Grundwasserstandsniveaus im Einzugsgebiet des WWK. Patthorst im Vergleich zum unbeeinflussten Referenzniveau.

Abbildung 13: Entwicklung der prozentualen Abweichung der Niederschlagshöhe vom langjährigen Mittelwert an verschiedenen Messstationen

Führt man die Einzelbetrachtung in einer Grafik zusammen, die die Abweichung der einzelnen Wasserwirtschaftsjahre zum langjährigen Mittelwert (1996-2021) darstellt (Abb. 13) so lassen sich folgende Schlussfolgerungen ziehen.

Die Grundwasserstandsentwicklung ist meist zeitversetzt von der Niederschlagshöhe abhängig. Im Zeitraum 2009 liegen sowohl bei den Grundwasserständen, als auch bei den Niederschlägen meist unterdurchschnittliche Werte vor, die sich deutlich vom Niveau des Zeitraumes 1997 bis 2008 unterscheiden. Im WWJ 1996 lagen noch ungünstigere Bedingungen vor, als in der Periode 2018-2020, allerdings war diese Trockenphase nach einem Jahr wieder beendet. Nach einer kurzen Erholung des Grundwasserstandsniveaus im Jahr 2020 und 2021 scheinen sich die Grundwasserstände im Jahr 2022 wieder tendenziell zu verringern. Im WWJ 2019 und 2020 wurde im Einzugsgebiet des Wasserwerkes Patthorst das tiefste regionale Grundwasserstandsniveau im tiefen Grundwasserleiter beobachtet. Es lag rd. 0,40 m unter dem langjährigen Durchschnitt. Im Jahr 2021 befand es sich noch 0,25 m unter dem langjährigen Durchschnitt. Im Jahr 2020 weicht die Entwicklung um rd. -0,20 m deutlich von den Referenzmessstellen ab, so dass hierfür der Fördereinfluss veranstwortlich gemacht werden kann. Im Jahre 2020 wurde die bislang höchste Jahresentnahme gefördert.

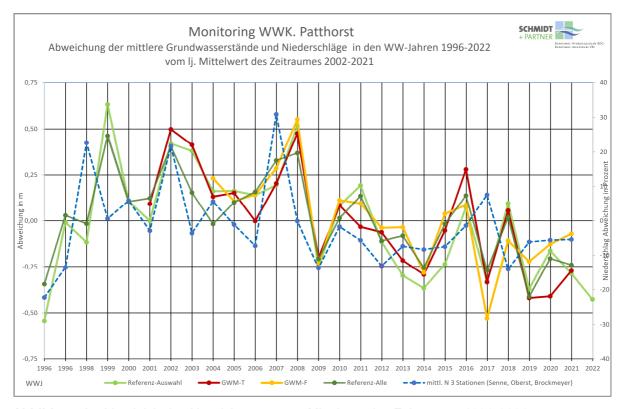


Abbildung 14: Vergleich der Abweichungen zum Mittelwert des Zeitraumes 1996-2021

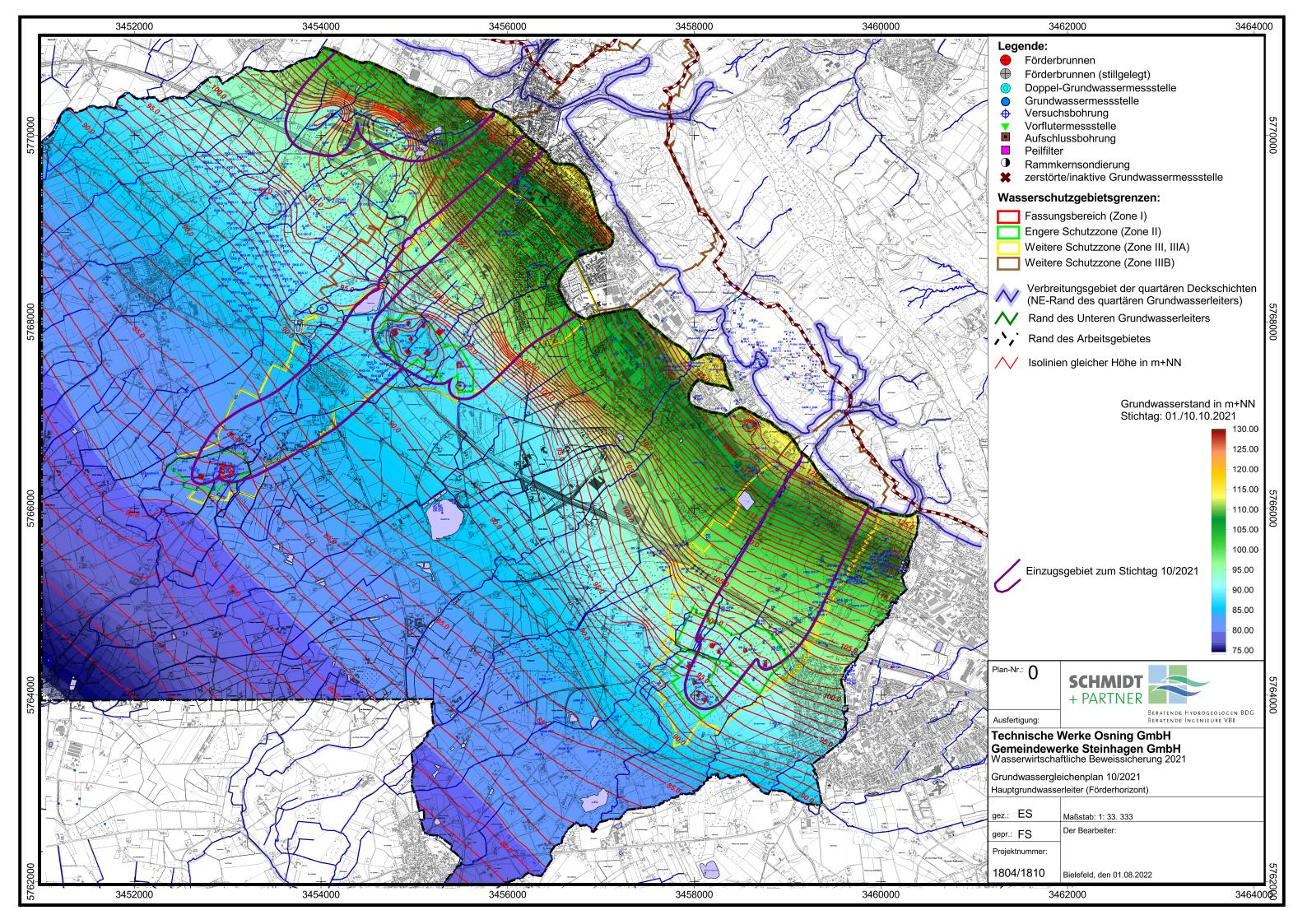
Seite 37

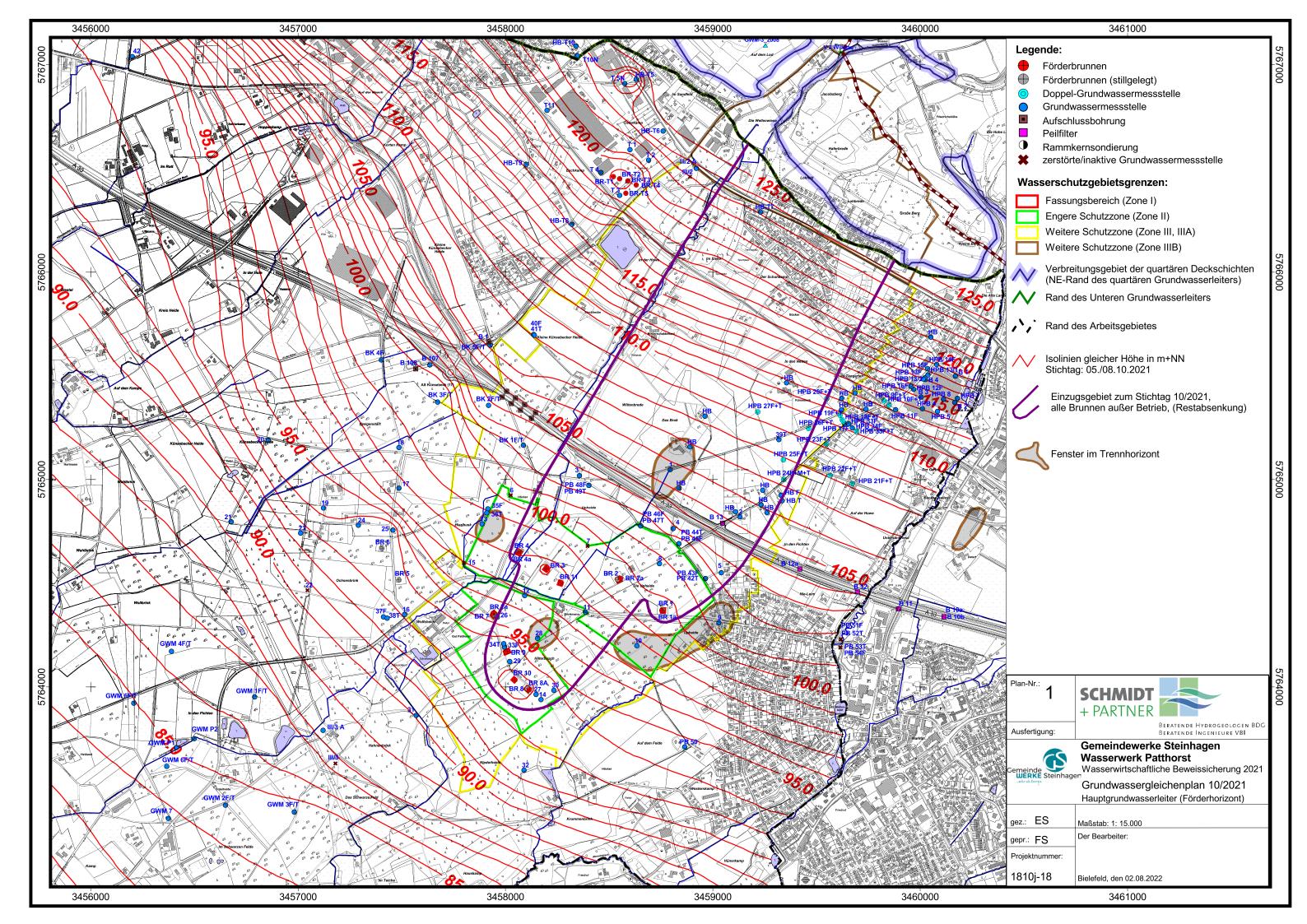
Im Zeitraum ab 2009 bis 2021 hat sich das mittlere Grundwasserstandsniveau um 0,40 m reduziert. Bei einer mittleren grundwassererfüllten Mächtigkeit von rd. 15 m im 4,16 km² großen Einzugsgebiet der Wasserschutzzone IIIA bedeutet eine Reduzierung des Grundwasserstandsniveaus um 0,5 m, dass sich der Grundwasservorrat bei einem nutzbaren Porenvolumen von 15 % in diesem Zeitraum um rd. 3,3 % verringert hat. Dies entspräche einer Grundwassermenge von rd. 312.000 m³.

Diese Tendenz sollte ergänzend in der Form der hier vorgestellten Auswertung weiter beobachtet und ausgewertet werden. Ein unmittelbarer Handlungsbedarf ergibt sich aus der Situation zum jetzigen Zeitpunkt noch nicht.

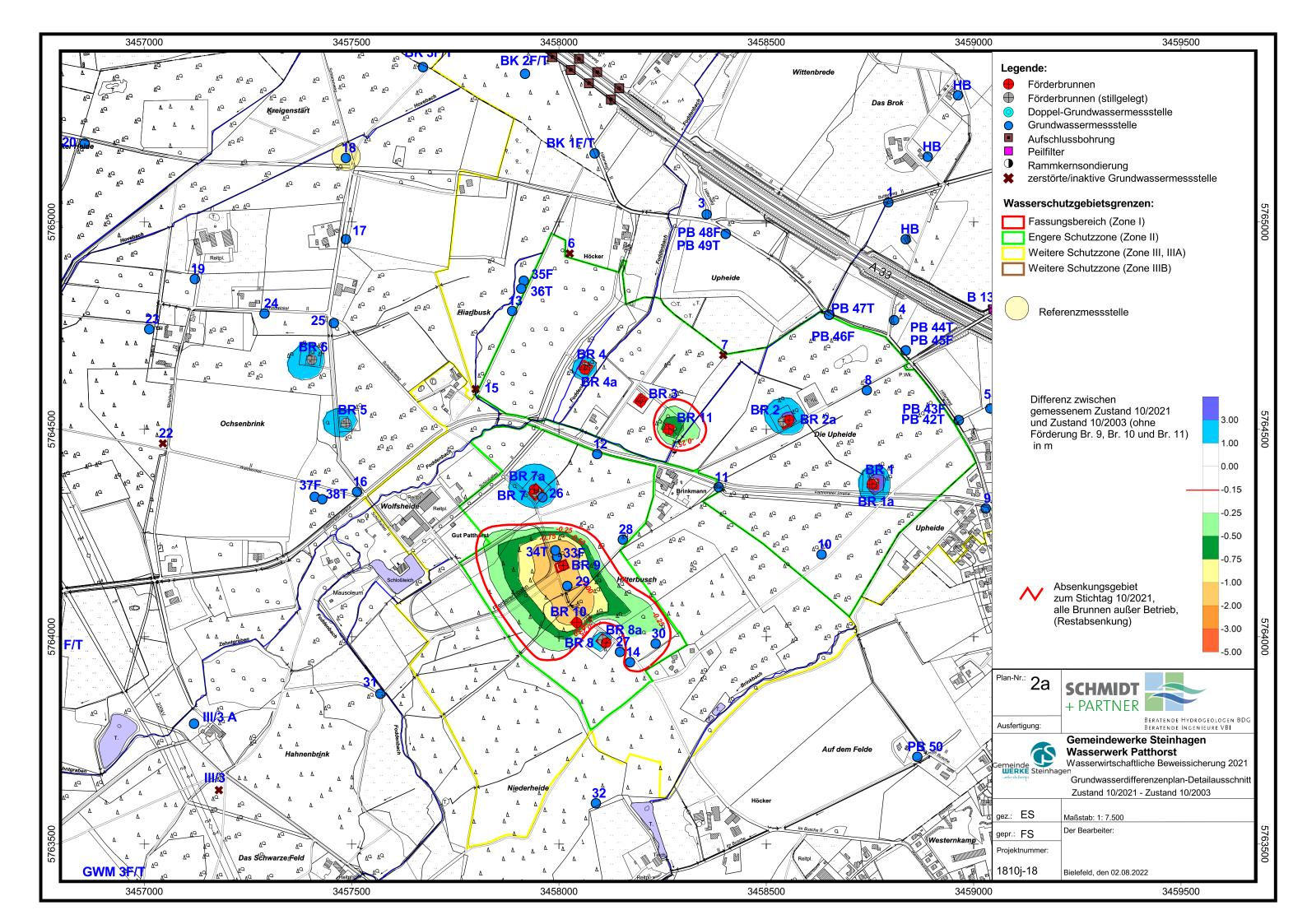
Bielefeld, den 11.10.2022

Dipl.-Geol. Frank Schmidt


Dipl.-Ing. Viola Redecker


	Pläne	
Plan-Nr.	Titel	Maßstab
0	Grundwassergleichenplan 10/2021 - Hauptgrundwasserleiter (Förderhorizont)	1:33.333
1	Grundwassergleichenplan 10/2021 - Detailplan Wasserwerk Patthorst Hauptgrundwasserleiter (Förderhorizont, mit Förderung aus Brunnen 9)	1 : 15.000
2	Grundwasserdifferenzenplan Zustand 10/2021 - Zustand 10/2 Übersichtsplan Wasserwerk Patthorst	2003 1 : 15:000
2a	Grundwasserdifferenzenplan Zustand 10/2021 - Zustand 10/2 Detailausschnitt Wasserwerk Patthorst	2003 1 : 7.500

- Anhang 1: Stammdaten der Grundwassermessstellen und Brunnen mit Stichtagsmessung sowie klimatisch bedingte Abweichung
- Anhang 2: Fördermengen
- Anhang 3: Grundwasserstandsganglinien
- Anhang 4: Niederschlagsentwicklung
- Anhang 5: Hydrochemie
 - Anhang 5.1: Ergebnisse der hydrochemischen Analysen (Tabelle, 5 Jahre)
 - Anhang 5.2: Hydrochemische Entwicklung an den Förderbrunnen (Grafiken)


Anlage

- Anlage 1: Zusammenfassende wasserwirtschaftliche Tabelle mit Darlegung der bewertungsrelevanten klimatischen und wasserwirtschaftlichen Kenndaten für den Beweissicherungszeitraum der letzten sechs Jahre (2015 bis 2021)
- Anlage 2: Regionale Bewertung der klimatischen und hydrogeologischen Situation im Einzugsgebiet des WWK Patthorst im Zeitraum 1996 2021

Anhang 1: Stammdaten der Grundwassermessstellen und Brunnen mit Stich-

tagsmessung sowie klimatisch bedingte Abweichung

Anhang 2: Fördermengen

Anhang 3: Grundwasserstandsganglinien

Anhang 4: Niederschlagsentwicklung

Anhang 5: Hydrochemie

Anhang 5.1: Ergebnisse der hydrochemischen Analysen (Tabelle, 5 Jahre)

Anhang 5.2: Hydrochemische Entwicklung an den Förderbrunnen (Grafiken)

Anhang 1: Stammdaten der Grundwassermessstellen und Brunnen mit Stichtagsmessung sowie klimatisch bedingte Abweichung

MSTNR	MSTBEZ	Ort / Wasserwerk	R-Wert	H-Wert	GOK	MPH	Wst [m+NN]	Wst [m+NN]	Hinweis/
					m+NN	m+NN	02.10.2003	04/10.10.2021	Status
020780000	SM	Tatenhausen 1-6	3454780	5767910					
020780310	BR 1	Tatenhausen	3454780	5767910	97,64	98,86		88,56	
	BR 2 BR 3	Tatenhausen Tatenhausen	3454931 3455141	5767721 5767708	97,06 98,60	96,36 97,00		86,98 85,97	
	BR 4	Tatenhausen	3455482	5767575	100,22	98,62		00,07	außer Betrieb
020780047	BR 4a	Tatenhausen	3455483	5767571 5767340	100,53	100,51		04.24	außer Betrieb
020780059	BR 4b BR 5	Tatenhausen Tatenhausen	3455509 3454935	5767812	101,60 97,61	102,34		91,34	ab 08/2021 im Betrieb außer Betrieb
	BR 5a	Tatenhausen	3454964	5767854		98,50		87,85	
	BR 6A	Tatenhausen Tatenhausen	3455262 3455097	5767924 5768007	100,27	100,27 100,00		92,25 87,62	
	BR 6B (1A)	Tatenhausen	3454937	5768025	100,00	99,40		88,58	
020790072	BR 6c	Tatenhausen Tatenhausen	3455240	5767447	105 42	106.15			neu ab 2020
020780072	1 neu	Tatenhausen	3455656 3455678	5768331 5768258	105,43 105,09	106,15 105,94			neu ab 2021
020780084	2	Tatenhausen	3455530	5768428	105,85	106,39			
020780096	2 neu 3F	Tatenhausen Tatenhausen	3455482 3456110	5768387 5767750	105,83 107,63	106,62 108,11			neu ab 2021
020780102	3T	Tatenhausen	3456110	5767750	107,62	108,11			
020780114 020780126	5	Tatenhausen Tatenhausen	3455480 3455711	5767190 5767603	98,11 102,09	98,60 102,26		93,99	
020780128	6	Tatenhausen	3455803	5767079	99,26	99,97		92,73	
020780140	7	Tatenhausen	3454954	5767708	97,29	97,62		90,56	
	8F 8T	Tatenhausen Tatenhausen	3454080 3454080	5767640 5767640	92,19 92,20	92,63 92,65		90,75 90,28	
020780175	9	Tatenhausen	3454613	5768113	98,68	99,35			inaktiv
020700107	9neu	Tatenhausen	3454629 3455020	5768132 5768800	99,12	99,92		93,72 101,48	
020780187 020780199	10 11	Tatenhausen Tatenhausen	3455280	5768680	105,89 107,73	106,26 107,92		101,46	
020780205	12	Tatenhausen	3455010	5768170	101,59	101,79		95,97	
020780217 020780229	13 14	Tatenhausen Tatenhausen	3454860 3455330	5767500 5768090	95,54 101,54	96,09 102,01		91,94 96,25	
020780230	15	Tatenhausen	3455628	5767796	102,19	102,57		96,10	
020780242	16	Tatenhausen	3455430	5768000	100,81	101,59		96,08	
020780254 020780266	17 41	Tatenhausen Tatenhausen	3454190 3456390	5768740 5768400	100,94 112,28	101,79 112,81		96,63 105,88	
020780278	42	Tatenhausen	3456200	5767039	101,31	101,79		93,59	
	43 44	Tatenhausen Tatenhausen	3454640 3454230	5767920 5767270	97,61 91,68	98,21 92,17		89,44	inaktiv
020780308	45	Tatenhausen	3454640	5766760	96,31	96,81		88,81	
020786943	109F	Tatenhausen	3454658	5767488	94,80	94,64		91,84	
020786955 020786967	110T 111F	Tatenhausen Tatenhausen	3454659 3454754	5767489 5767582	94,81 95,82	94,67 95,70		91,82	
020786979	112T	Tatenhausen	3454755	5767583	95,80	95,69		92,07	
020786980 020786992	113 114	Tatenhausen Tatenhausen	3454942 3455534	5768031 5767903	99,38 102,10	100,01 102,64		92,31 96,02	
020787108	115	Tatenhausen	3455154	5768864	107,07	107,51		50,02	
020787110	116	Tatenhausen	3455362	5768506	107,71	108,21		105,41	
020787121 020780370	117 BR 7	Tatenhausen Bokel	3455462 3452724	5768286 5766376	104,54 89,48	104,48 89,48		101,54 84,37	
020780382	BR 8	Bokel	3452947	5766416	84,30	84,30		81,88	
	BR 9 BR 10	Bokel Bokel	3453038 3452914	5766443 5766507	84,71 85,00	84,71 85,00		81,38 80,17	
	BR 11	Bokel	3452490	5766413	00,00	00,00			außer Betrieb
020700426	BR 11a	Bokel	3453000	5766484	84,80	84,95		81,05	
020780436 020780448	18 19	Bokel Bokel	3452976 3452670	5766469 5766370	84,43 84,02	85,34 84,56		83,16 82,02	
	20	Bokel	3452560	5766540	83,60	84,44		82,65	
020780461 020780473	21	Bokel Bokel	3452610 3452676	5766459 5766424	83,86 83,92	84,60 84,84		82,40 82,42	
020780485	23	Bokel	3452769	5766383	84,50	84,89		82,59	
	24 25	Bokel Bokel	3452841 3452760	5766396 5766350	84,85 83,97	84,13 84,25		81,93 81,66	
	26	Bokel	3452666	5766234	83,05	83,35		81,81	
020780527	27	Bokel	3452851	5766235	84,07	84,41		82,35	
020780539	28 29	GP Bokel Bokel	3452068 3452900	5766192 5766500	85,39	85,99		81,26 82,89	
020780540	30	Bokel	3452880	5766360	84,13	84,91		82,69	
020780552 020780564	31 32	Bokel Bokel	3453020 3453080	5766390 5766404	84,47 84,58	85,18 85,31		82,98 83,26	
_020786610	33F	Bokel	3453071	5766460	84,76	85,18		83,19	
020786621	33T	Bokel	3453072	5766461	84,76	85,17		83,00	
020780588	34 35	Bokel Bokel	3453078 3453079	5766691 5766692	85,84	86,57		84,77	
020780590	36	Bokel	3453064	5766479	84,95	85,80		82,95	
_020786633 020786645	37F 37T	Bokel Bokel	3453188 3453189	5766524 5766525	85,02 85,02	85,42 85,46		83,77 83,94	
020780618	38	Bokel	3453101	5766304	84,75	85,27		83,35	
	39 40	Bokel Bokel	3453000 3452939	5766296 5766630	84,28 85,35	84,62 85,70		82,96 83,45	
	46F	Bokel	3452939	5768768	121,28	121,78		118,43	
020780655	46T	Bokel	3456739	5768768	121,33	121,83		115,93	
	47 48F	Bokel Bokel	3457260 3456773	5768200 5767956	125,98 116,51	126,48 117,01		119,53 113,60	
020780680	48T	Bokel	3456773	5767956	117,08	117,58	_	112,36	
	49 50	Bokel Bokel	3456800 3456580	5767250 5768210	111,28 114,91	111,78 115,41		109,82 112,66	
020780709	III/1	LGD	3459700	5767440	158,15	158,56		156,84	
020103025	III/2	LGD	3458890	5766460	130,45	130,71			inaktiv
020103037 020103141	III/3 III/3 A	LGD LGD	3457180 3457120	5763630 5763790	90,36 91,89	90,63 91,71	88,43	88,29	
020103189	III/2 A	LGD	3458920	5766500	130,82	131,12	00,43	00,29	
	OS 1	Obersteinhagen Patthorst	3461210 3458758	5762000 5764371	101,24	101,84	93,68	98,59	
	BR 1 BR 2	Patthorst	3458758	5764371 5764518	103,50 104,50	103,35 104,41	100,50	90,39	außer Betrieb
							,••		neu 2019, GOK-MP-Höhe
	BR 2a	Patthorst	3458552	5764523	104,74	104,99		98,81	aktualisiert 06/2021

MSTNR	MSTBEZ	Ort / Wasserwerk	R-Wert	H-Wert	GOK	MPH	Wst [m+NN]	Wst [m+NN]	Hinweis/
					m+NN	m+NN	02.10.2003	04/10.10.2021	Status
020781246	BR 4	Patthorst	3458062	5764649	100,62	99,87	97,83		
	BR 4a	Patthorst	3458062	5764644	100,53	100,71			
020781258 020781260	BR 5 BR 6	Patthorst Patthorst	3457486 3457404	5764515 5764668	98,80 97,85	98,64 97,51	95,47 90,69		außer Betrieb außer Betrieb
020781271	BR 7	Patthorst	3457945	5764349	97,89	98,74	90,09		außer Betrieb
020781271	BR 7a	Patthorst	3457938	5764352	97,89	98,74	00.40	95,18	
020781283	BR 8 BR 8a	Patthorst Patthorst	3458105 3458114	5763992 5763985	97,32 97,75	96,52 97,90	90,12	92,52	ab 10/2020 im Bterieb
020781313	BR 9	Patthorst	3458010	5764171	97,24	97,51		93,35	db 10/2020 III Blotton
	BR 10	Patthorst	3458043	5764034	96,68	96,84		92,47	
020785513	BR 11	Patthorst Patthorst	3458265 3458794	5764501 5765047	100,19	100,33 108,98	106,14	97,08 105,81	
020785525	2	Patthorst	3459130	5764820	110,17	110,79	105,39	105,08	
020785537	3	Patthorst	3458356	5765018	105,76	106,05	102,92	102,74	
020785549 020785550	5	Patthorst Patthorst	3458808 3459040	5764763 5764550	107,75 106,75	108,22 106,58	102,83 102,74	102,82 102,46	
020785562	6	Patthorst	3458026	5764924	103,64	104,29	100,12		außer Betrieb
020785574	7	Patthorst	3458396	5764679 5764594	101,83 105,68	102,49 106,72	99,28	100,72	außer Betrieb
020785586 020785598	9	Patthorst Patthorst	3458742 3459029	5764394	103,00	106,72	101,12 101,46	100,72	
020785604	10	Patthorst	3458633	5764198	101,20	101,91	98,00	97,80	
020785616	11	Patthorst	3458385	5764360	101,21	101,74	97,88	97,70	
020785628 020785630	12	Patthorst Patthorst	3458092 3457887	5764440 5764785	100,64 101,97	101,27 102,64	96,67 98,19	96,98 98,47	
020785641	14	Patthorst	3458171	5763938	97,78	98,16	93,41	93,24	
020785653	15	Patthorst	3457799	5764597	99,47	100,20	97,19	00.00	außer Betrieb
020785665 020785677	16 17	Patthorst Patthorst	3457513 3457486	5764349 5764958	97,37 100,86	98,30 101.73	92,90 97,61	93,02 97,62	
020785689	18	Patthorst	3457486	5765154	101,11	101,84	98,78	98,80	
020785690	19	Patthorst	3457122	5764862	96,76	97,54	93,65	94,10	<u> </u>
020785707 020785719	20	Patthorst Patthorst	3456856 3456677	5765189 5764796	98,42 93,56	99,17 94,50	94,07 89,05	94,43 89,12	
020785720	22	Patthorst	3457045	5764466	99,15	99,93	90,61	00,12	außer Betrieb
020785732	23	Patthorst	3457012	5764741	95,57	96,36	92,32	92,59	
020785744 020785756	24 25	Patthorst Patthorst	3457290 3457457	5764779 5764756	97,40 98,02	98,17 98,89	92,86 92,71	93,60 93,88	
020785768	26	Patthorst	3457960		97,46	97,75	93,70	95,41	
020785770	27	Patthorst	3458147	5763963	97,84	98,20	93,25	93,16	
020785781 020785793	28 29	Patthorst Patthorst	3458154 3458020	5764234 5764122	97,66 96,20	97,95 96,47	95,28 94,46	95,20 93,18	
020785800	30	Patthorst	3458233	5763983	98,03	98,32	94,05	93,83	
020785811	31	Patthorst	3457569	5763862	92,22	92,61	90,09	90,01	
020785823 020785835	32 33F	Patthorst Patthorst	3458089 3457995	5763598 5764192	94,10 96,87	94,33 97,39	92,51 94,23	92,38 92,94	
020785847	34T	Patthorst	3457991	5764208	97,12	97,03	94,53	93,20	
020785859	35F	Patthorst	3457915	5764858	102,53	102,95	100,02		
020785860 020785872	36T 37F	Patthorst Patthorst	3457909 3457411	5764839 5764337	102,57 97,76	103,09 98,29	99,09 93,64	98,99 93,27	
020785884	38T	Patthorst	3457429	5764331	97,62	98,25	92,60	92,53	
020785896	39T	Patthorst	3459318		116,57	116,48	108,76	108,26	
020785902 020785914	40F 41T	Patthorst Patthorst	3458135 3458139	5765699 5765695	112,39 112,38	112,14 112,29	108,56	109,15 108,00	
020788125	PB 42T	Patthorst	3458964	5764522	105,59	105,49	100,00	101,31	
020788137	PB 43F	Patthorst	3458964	5764522	105,61	105,55		101,97	
020788149 020788150	PB 44T PB 45F	Patthorst Patthorst	3458836 3458836	5764690 5764690	107,24 107,25	107,14 107,16		101,38 105,61	
020788162	PB 46F	Patthorst	3458652	5764776	105,51	106,37		100,01	
020788174	PB 47T	Patthorst	3458651	5764776	105,47	106,37		101,41	
020788186 020788198	PB 48F PB 49T	Patthorst Patthorst	3458402 3458402		105,57 105,55	105,50 105,48		102,45	
	PB 50	Patthorst	3458864		97,49	97,45		102,43	
020788216	PB 51F	Patthorst	3459617	5764229	105,70	106,20			außer Betrieb
020788228 020788230	PB 52T PB 53T	Patthorst Patthorst	3459617 3459615	5764229 5764190	105,66 104,33	106,15 104,87			außer Betrieb außer Betrieb
020788241	PB 54F	Patthorst	3459615		104,32	104,85			außer Betrieb
020788307	1F Ordelheide	Patthorst	3456790		93,83	94,39			
020788319 020788320	1T Ordelheide 2F Ordelheide	Patthorst Patthorst	3456790 3456649	5763951 5763429	93,82 87,78	94,40 88,32		86,54 84,48	
020788332	2T Ordelheide	Patthorst	3456649	5763429	87,77	88,36		84,49	
020788344	3F Ordelheide	Patthorst	3456981	5763396	89,11	89,67		85,23	
020788356 020788368	3T Ordelheide 4F Ordelheide	Patthorst Patthorst	3456981 3456389	5763396 5764171	89,12 95,68	89,70 96,20		84,69 93,40	
020788368	4T Ordelheide	Patthorst	3456389		95,66	96,25		93,40 86,22	
020788381	5F Ordelheide	Patthorst	3456207	5763921	87,64	88,22		85,03	
020788393 020788400	5T Ordelheide 6F Ordelheide	Patthorst	3456207 3456366	5763921	87,58 87,34	88,19 87,96		84,99	
020788411	6T Ordelheide	Patthorst Patthorst	3456366		87,34	87,95		84,43 84,43	
020788423	7 Ordelheide	Patthorst	3456374		86,76	87,24		83,91	
020788484 020788496		Patthorst	3456413		87,70	88,27		85,25	
020788526		Patthorst Patthorst	3456499 3458086	5763750 5765165	88,38 106,68	88,78 107,38		86,59 105,06	
020788538	BK1T	Patthorst	3458086	5765165	106,68	107,38		102,38	
020788540	BK2F	Patthorst	3457918		107,42	108,00		105,63	
020788551 020788563	BK2T BK3F	Patthorst Patthorst	3457918 3457672	5765357 5765373	107,42	108,09 105,53		103,56 103,50	
020788575	BK3T	Patthorst	3457672	5765373	104,81	105,53		99,68	
020788587	BK4F	Patthorst	3457401	5765576	104,73	105,38		103,63	
020788605 020788617	BK5F BK5T	Patthorst Patthorst	3457926 3457926	5765648 5765648	108,14 108,20	108,94 108,60		107,08 107,21	
020788617	T 1	Timken	3457926		126,60	127,00		121,39	
020880820	T 2	Timken	3458690	5766540	127,36	127,76		121,54	
020880832	T 3	Timken	3458550	5766370	124,50	124,88		119,03	
020880844 020880856	T 4 HB-T5	Timken Timken	3458460 3458630		124,07 131,37	124,34 132,02		119,50	
020880868	HB-T6	Timken	3458760	5766680	129,79	130,15		124,71	
020880870	HB-T7	Timken	3459230		130,40	130,66			
020880881	HB-T8	Timken	3458320	5766230	120,73	121,63			

MSTNR	MSTBEZ	Ort / Wasserwerk	R-Wert	H-Wert	GOK	MPH	Wst [m+NN]	Wst [m+NN]	Hinweis/
					m+NN	m+NN	02.10.2003	04/10.10.2021	Status
020880900	HB-T10	Timken	3458340	5767090	130,65	131,27			
020880911	BR-T1	Timken	3458520	5766460	125,80	124,39		117,90	
020880923 020880935	BR-T2 BR-T3	Timken Timken	3458550 3458590	5766450 5766440		125,35 125,91		119,03 118,80	
020880947	BR-T4	Timken	3458630		126,00	126,67		116,64	
020880959 20880960	BR-T5 T11	Timken Timken	3458580 3458200	5766380 5766780	125,00	125,58 125,39	·	119,02 119,52	
20880972	T 5N	Timken	3458575	5766909		130,16		121,82	
20880984 20884412	T10N Br A	Timken Baxter	3458345 3457273	5767044 5767704		131,48 119,74		122,54	
20884424	Br B	Baxter	3457320	5767636	121,04	118,94	-		
20884436 20884448	Br C	Baxter Baxter	3457394 3457474	5767559 5767311	121,42 120,83	119,60 121,56		-	
20884450	4	Baxter	3457079	5767416	116,87	117,52			
20884461 20884473	10 15	Baxter Baxter	3456940 3457422	5767657 5767796	117,87 123,65	118,67 124,51			
20884485	19	Baxter	3457491	5767559	122,16	122,63			
20884497 20884503	22 23a	Baxter Baxter	3457155 3457133	5767687 5767827	120,10 120,25	120,69 120,51			
20884515	25	Baxter	3457259	5767995		125,93			
20884527 20884539	27	Baxter	3457658			131,86			
20884539	28 B22	Baxter MD Künsebeck	3457584 3458012	5767884 5767951	128,92	128,92			
	B24	MD Künsebeck	3458002	5767227					
	B25 HB	MD Künsebeck Patthorst	3457661 3458962	5767622 5765305	-			-	
	HB	Patthorst	3459355	5765466			-		
	HB HB	Patthorst Patthorst	3458889 3458836	5765157 5764958	-				
	HB	Patthorst	3459109	5764844					
	HB	Patthorst	3459261	5764840					
	HB HB	Patthorst Patthorst	3459232 3459240	5764878 5764948	-				
	HB F	Patthorst	3459328	5764924					
	HB T HB	Patthorst Patthorst	3459334 3459620	5764898 5765335				 	
	HB	Patthorst	3459738	5765339			-		
	HB HB	Patthorst Patthorst	3459621 3459686	5765391 5765417					
	HB	Patthorst	3460051	5765686					
	B 1 B 2	Patthorst (Hörmann) Patthorst (Hörmann)	3460169 3460166						
	B 3	Patthorst (Hörmann)	3460004		126,75				
	B 4	Patthorst (Hörmann)	3460025	5765482	128,22	105.70			
	HPB 4 HPB 5	Patthorst (Hörmann) Patthorst (Hörmann)	3460010 3460083	5765341 5765328	-	125,73 126,10			
	HPB 7	Patthorst (Hörmann)	3460179						
	HPB 8 HPB 9F	Patthorst (Hörmann) Patthorst (Hörmann)	3460112 3459826	5765387 5765379		126,77 125,70		-	
	HPB 9T	Patthorst (Hörmann)	3459826	5765379	125,15	125,10			
	HPB 10F HPB 10T	Patthorst (Hörmann) Patthorst (Hörmann)	3459850 3459850	5765359 5765359		125,36 124,85			
	HPB 11F	Patthorst (Hörmann)	3459881	5765336		124,73			
	HPB 12F HPB 13F	Patthorst (Hörmann) Patthorst (Hörmann)	3459968 3460022	5765435 5765490		127,21 128,59			
	HPB 13/1	Patthorst (Hörmann)	3460022	5765504		128,55			
	HPB 13/2	Patthorst (Hörmann) Patthorst (Hörmann)	3460015	5765484 5765554	128,06	127,89			
	HPB 14F HPB 15F	Patthorst (Hörmann)	3460079 3460035			130,03 129,82			
	HPB 16F	Patthorst (Hörmann)	3459955			127,22			
	HPB 17F HPB 18F	Patthorst (Hörmann) Patthorst (Hörmann)	3459636 3459623			121,73 121,41			
	HPB 18T	Patthorst (Hörmann)	3459629	5765279	121,54	121,38			
	HPB 19F HPB 19T	Patthorst (Hörmann) Patthorst (Hörmann)	3459613 3459613			122,18 121,41			
	HPB 20F	Patthorst (Hörmann)	3459549		121,63	122,08			
	HPB 20T HPB 21F	Patthorst (Hörmann) Patthorst (Hörmann)	3459549 3459672	5765390 5764980		122,06 117,43			
	HPB 21T	Patthorst (Hörmann)	3459672	5764980		117,43			
	HPB 22F HPB 22T	Patthorst (Hörmann)	3459565 3459565	5765019	-, -	116,70 116,66			
	HPB 23F	Patthorst (Hörmann) Patthorst (Hörmann)	3459565	5765019 5765171		118,91			
	HPB 23T	Patthorst (Hörmann)	3459547	5765171		118,87			
	HPB 24F HPB 24M	Patthorst (Hörmann) Patthorst (Hörmann)	3459342 3459342	5765000 5765000		114,14 114,15		 	
	HPB 24T	Patthorst (Hörmann)	3459342	5765000	114,28	114,15	-		
	HPB 25F HPB 25T	Patthorst (Hörmann) Patthorst (Hörmann)	3459340 3459340			115,92 115,88			
	HPB 26F	Patthorst (Hörmann)	3459461	5765246		118,93			
	HPB 26T HPB 27F	Patthorst (Hörmann)	3459461 3459216			118,99 116,01			
	HPB 27F HPB 27T	Patthorst (Hörmann) Patthorst (Hörmann)	3459216	5765326 5765326		116,01			
	HPB 33F	Patthorst (Hörmann)	3459655	5765268		121,99			
	HPB 34F HPB 35F	Patthorst (Hörmann) Patthorst (Hörmann)	3459672 3459692	5765248 5765232		121,81 121,10	<u></u>	 	
	HPB 35T	Patthorst (Hörmann)	3459692	5765232	121,16	121,08			
020786037 020786049	51 52 (zerstört)	Bokel Bokel	3452527 3452121	5766282 5766383	82,16 82,72	83,78 83,13		81,93	zerstör
020786050	53	Bokel	3452516	5765867	82,40	82,99		80,21	2618101
020786062	54	Bokel	3453550	5765797	84,33	85,05		83,38	
020786074 020786086	55 56	Bokel Bokel	3453907 3453598	5766029 5766304	86,89 86,60	87,36 87,40		85,68	inaktiv
020786098	57	Bokel	3453550	5765980	85,24	86,05		84,11	
	58	Bokel	3453605 3452400		87,39 82,16	87,87 82,61		85,62 81,23	
020786104 020786116	59	Bokel	3432400						
	59 60 61	Bokel Bokel Bokel	3452400 3452421		82,80 83,03	83,38 83,64		81,79 82,25	

MSTNR	MSTBEZ	Ort / Wasserwerk	R-Wert	H-Wert	GOK	MPH	Wst [m+NN]	Wst [m+NN]	Hinweis/
					m+NN	m+NN	02.10.2003	04/10.10.2021	Status
020786153	63	Bokel	3452648	5766446	83,89	84,59		82,41	
020786165	64	Bokel	3452748	5766336	83,83	84,07		82,27	
020786177 020786189	65 66	Bokel Bokel	3452991 3453002	5766454 5766312	84,88 84,17	84,88 84,45		82,93	inaktiv
020700109	66F	Bokel	3453002	5766313	84,28	84,68		82,94	illaku
020786190	67	Bokel	3453336	5767235	89,22	89,50		86,00	
020786207 020786219	68 69	Bokel Bokel	3453324 3453597	5766987 5766716	87,31 87,89	87,57 88,32		85,72	inaktiv
	69 neu	Bokel	3453600	5766723	87,92	88,72		86,10	marta
020786220	70	Bokel	3453620	5767221	88,74	88,96		07.70	inaktiv
020786232 020786244	71 72 ML	Bokel ML Bokel	3453979 3452811	5767060 5766543	89,56 84,78	89,73 84,78		87,73	
020786256	73 ML	ML Bokel	3453283	5766644	86,84	86,84			
020786268	74	Bokel	3453083	5767218	88,03	88,36		85,56	
020786270 020786281	75 76	Bokel Bokel	3453465 3453710	5767579 5768125	91,05 94,48	91,26 94,76		92,73	
020786293	77	Bokel	3452518	5766834	84,87	85,24		83,69	
020786300	78	GP Bokel	3452349	5766482	82,01 84,04	82,76 85,32		82,31	
020786311 020786323	79 80	GP Bokel GP Bokel	3452931 3453186	5766660 5766722	85,19	85,76		83,82	
020786335	81	GP Bokel	3453557	5767078	86,29	87,16			
020786347	82	GP Bokel	3453781 3453874	5767117	88,25	88,78		00.56	inaktiv
020786359 020786360	83 84	GP Bokel GP Bokel	3453874	5767848 5768517	90,21 99,33	91,06 100,06		90,56	inaktiv
020786372	85	Bokel	3452281	5766566	82,61	83,16		81,58	matte.
020786384	86	Bokel	3452557	5767281	86,42	86,82		84,77	
020786396 020786402	87 88	Bokel Bokel	3452781 3453113	5767552 5768042	87,65 92,73	88,05 93,13		84,78 87,86	
020786414	89	Bokel	3453450	5768329	95,21	95,55		90,75	
020786426	90 01 (zarotärt)	Halle	3455933	5769089	117,03	117,03		113,11	
020786438 020786440	91 (zerstört) 92 (zerstört)	Halle Halle	3455910 3455991	5768977 5768937	113,55 114,10	114,30 114,10			zerstöri zerstöri
020786451	93	Halle	3455901	5768888	113,90	113,90			2010(01)
020786463	94	Halle	3456732	5768109	116,98	117,08		113,63	
020786475 020786487	95 (zerstört) 96	Halle Halle	3456283 3456213	5768613 5768493	112,87 110,92	113,58 111,82			zerstör inaktiv
020786499	97	Halle	3456218		110,51	111,37			manuv
020786505	98	Halle	3456223	5768556	111,93	112,48			
020786517 020786529	99 100	Halle Halle	3456218 3456108	5769453 5769403	122,83 122,96	122,28 123,12		118,60	
020786530	101	Halle	3456138	5769513	123,58	123,25		119,15	
020786542	102	Halle	3456178	5769478	123,45	123,28		119,10	
020786554 020786566	103 104	Halle Halle	3456103 3456138	5769358 5769333	121,29 120,93	121,19 120,89		117,39	
020786578	105	Halle	3456103	5769483	122,68	122,68		118,61	
020786580	106	Halle	3456163	5769340	122,00	122,00		120,35	
020786591 020786608	107 108	Bokel Bokel	3452722 3452016	5766656 5766767	84,93 82,74	85,69 83,39		83,38 81,83	
020700000	118	Bokel	3453020	5766484	84,80	85,22		01,03	
021000049	603	LGD	3455370	5769800	117,82	118,32		114,49	
021000050 021000074	604 606	LGD LGD	3451710 3455240	5768490 5766690	87,31 93,63	87,67 94,22		85,51 91,78	
021000014	608	LGD	3451080	5764410	75,25	75,55		74,15	
021000116	609	LGD	3461310	5763960	120,56	120,84			
021001753 021001807	767 771	LGD LGD	3451140 3452040	5771220 5771510	98,84 111,08	99,14 111,43		95,05	
021001819	772	(PB1) LGD	3451380	5769645	89,41	89,91			inaktiv
021001832	774	(PB3) LGD	3451000	5770655	92,30	92,80			inaktiv
021001844 021691319	775 GK 1	(PB4) LGD Hartst Kuen	3450625 3455146	5769945 5765878	88,19 91,38	88,69 91,63			inaktiv
021691320		Hartst Kuen	3455437		92,43	92,65			
021691368	GK S/E	Hartst Kuen	3455300						
021691381 021691393	GK S/H GK S/G	Hartst Kuen Hartst Kuen	3455300 3455300	5765990 5765990					
021001000	B 8	WSBA	3461579		115,67	115,47			
	B 8a	WSBA	3461201		117,22	118,08			
	B 9 B 10	WSBA WSBA	3460912 3460559	5764042 5764214	115,48 112,43	116,08 112,88			
	B 10a	WSBA	3460115		111,43	111,95			
	B 10b	WSBA	3460115	5764337	111,45	111,65			
	B 11 B 12	WSBA WSBA	3459895 3459697	5764376 5764458	109,96 108,65	110,44 109,15			
	B 12a	WSBA	3459419		100,03	103,13			
	B 13	WSBA	3459047	5764789		109,99			
	B 15 B 16	WSBA WSBA	3454722 3454614	5767989 5767794	98,52 96,85	97,15			
	B 17	WSBA	3454470		96,64	37,13			
	B 18	WSBA	3454509	5768059	97,56				
	B 19 Pappelbr	WSBA Storck Halle	3454629 3455167		97,15 115,50	116,92			
	Pappeibr Paulinenbr	Storck Halle	3455167	5769893	113,77	113,98			
-	Küchenbr	Storck Halle	3454781	5770012	114,21	114,37			
	Torbr Bahnbr	Storck Halle Storck Halle	3454805 3454770		115,25 114,80	115,46 114,83			außer Betrieb
	Inselbr	Storck Halle	3454770	5770088	113,87	114,03			
	Magazinbr(stillgele	g Storck Halle	3454725	5769972		113,86			außer Betrieb
021692592 021692014	Krötenbr S 17F	Storck Halle Storck Halle	3454117 3454842	5770259 5770281	ca. 108 116,49	106,56 117,10		115,31	
021692014	S 18F	Storck Halle	3453620	5769412	102,44	103,11		100,41	
021692038	S 19F	Storck Halle	3453525	5769264	100,91	101,78		99,03	
021692040	S 19T	Storck Halle	3453526	5769264	100,95	101,80		93,19	
021692051 021692063	S 20F S 21F	Storck Halle Storck Halle	3454234 3454394	5769602 5769482	107,29	107,94 108,50		106,33	
021692075	S 21T	Storck Halle	3454396	5769481	108,00	108,51		100,37	
021692087	S 22F	Storck Halle	3454553	5769293	107,51	108,01		105,56	
021692099	S 22T	Storck Halle Storck Halle	3454553 3454653	5769294 5769285	107,52 107,28	107,98 107,82		102,18 104,97	
021692105	S 23F								

MSTNR	MSTBEZ	Ort / Wasserwerk	R-Wert	H-Wert	GOK	MPH	Wst [m+NN]	Wst [m+NN]	Hinweis/
					m+NN	m+NN	02.10.2003	04/10.10.2021	Status
021692129	S 24F	Storck Halle	3454088	5769752	107,04	107,71		104,46	
021692130	S 25F	Storck Halle	3454363	5770266	111,24	111,82		109,47	
021692142	S 26F	Storck Halle	3453919	5769461	104,23	104,78		102,62	
021692154	S 26T	Storck Halle	3453920	5769462	104,18	104,66		100,35	
021692166 021692178	S 27F S 27T	Storck Halle Storck Halle	3454263 3454262	5769156 5769155	104,14	104,68 104,64		103,43 96,99	
021692178	S 28F	Storck Halle	3453596	5769141	100,44	101,08		101,08	
021692191	S 28T	Storck Halle	3453595	5769141	100,45	101,00		101,00	
021692208	S 29F	Storck Halle	3453760	5768978	100,95	101,44			
021692210	S 29T	Storck Halle	3453760	5768977	100,98	101,48		97,08	
021692221	S 30F	Storck Halle	3453973	5768903	100,87	101,40		98,95	
021692233	S 30T	Storck Halle	3453974	5768901	100,93	101,36		96,91	
021692245	S 31F(alt)	Storck Halle	3454085	5769336	104,77	105,337		103,44	
021692932	S 31F(neu)	Storck Halle	3454084	5769334	101.01	105,70		103,40	
021692257	S 31T	Storck Halle	3454084	5769335	104,81	105,30		101,00	
	S 32F S 32T	Storck Halle Storck Halle	3453012 3453013	5769047 5769048	95,55 95,54	95,45 95,42		94,25 91,41	
	S 33F	Storck Halle	3453303	5768713	97,76	98,25		31,41	
	S 33T	Storck Halle	3453304	5768714	97,76	98,26			
	S 34F	Storck Halle	3453547	5769223	100,67	101,34			
	S 35F	Storck Halle	3453952	5769168	102,83	103,35			
	S 36F	Storck Halle	3453818	5769039	101,50	102,09			
	S 37F	Storck Halle	3454070	5769021	102,42	103,10			
	S 38F	Storck Halle	3453725	5769280	102,03	102,69			
	S 39F	Storck Halle	3452884	5769453		96,86			
	S 40F	Storck Halle	3453037	5769597		99,50			
001600010	S 41F S 42F	Storck Halle	3453117 3454428	5769648 5770295		99,84		100.01	
021692312 021692324	S 43F	Storck Halle Storck Halle	3454500	5770375		112,86 113,45		108,91 112,45	
021692324	S 44F	Storck Halle	3454097	5770272		108,47		106,72	
021692348	S 44T	Storck Halle	3454097	5770273		108,50		100,03	
	S 45F	Storck Halle	3454756	5769577		111,50		,	
_021692944	S 45T	Storck Halle	3454760	5769575	110,64	111,38		102,54	
	S 46	Storck Halle	3453848	5769355		103,84			
	S 47F	Storck Halle	3453492	5769367		101,49			
	S 48	Storck Halle	3453823	5769698		105,17			
	S 49F	Storck Halle	3454032	5769931		108,24			
004000050	S 50F	Storck Halle	3454325	5769683	404.04	108,89		00.42	inaktiv
021692350 021692361	S 51F S 51T	Storck Halle Storck Halle	3453610 3453610	5769700 5769700	101,01	101,88 101,98		99,43 100,13	
021692373	S 52F	Storck Halle	3453871	5770110	104,06	101,98		103,06	
021692385	S 52T	Storck Halle	3453871	5770110	103,94	104,66		100,18	
021692397	S 53F	Storck Halle	3454173	5770265	109,15	109,65		107,57	
021692403	S 53T	Storck Halle	3454173	5770265	109,15	109,65		100,04	
021692579	S 54F	Storck Halle	3454200	5770560	112,12	112,77		110,30	
021692580	S 54T	Storck Halle	3454290	5770525	112,07	112,53		110,87	
_021693006	S 55T	Storck Halle	3454750	5770027	114,19	114,85		102,65	
_021693018	S 56T	Storck Halle	3454554	5770159	112,48	112,98			inaktiv
_021693020	S 57F	Storck Halle	3454242	5769890	113,98	114,63			inaktiv
_021693031 021693043	S 57T S 58T	Storck Halle Storck Halle	3454236 3454050	5769887 5770118	114,01 108,32	114,65 109,32		100,29	inaktiv
021693043	S 59T	Storck Halle	3454050	5770118	116,64	117,14		100,29	
021693067	S 60T	Storck Halle	3455134	5770007	117,55	118,05		110,78	
021693079	S 61F	Storck Halle	3455190	5769958	115,92	116,42		114,26	
021693080	S 61T	Storck Halle	3455192	5769958	115,92	116,42		111,02	
_021693092	S 62F	Storck Halle	3455238	5769940	117,04	117,54		115,20	
021693109	S 63F	Storck Halle	3455008	5769863	113,86	114,36		111,53	
029503206	S 64F	Storck Halle	3453399	5769361	99,40	100,14		97,22	
029532073	S 64T	Storck Halle	3453400	5769358	99,46	100,20		93,07	
029503218		Storck Halle		5769416	99,26	99,04		95,50	
029503280		Storck Halle	3453295		99,13	99,24		94,93	
029503220	S 66F	Storck Halle Storck Halle	3453538 3453540	5770185 5770185		107,66		104,86 100,34	
	S 66T S 67F	Storck Halle	3453540			107,66 110,76		100,34	
029502329	S 67T	Storck Halle	3454983	5769380	109,78	110,76		107,84	
	HB	HB Grünebaum	3454013	5770498	107,37	107,37			HB Grünebaum
029570130		HB 2 Kreimeyer	3458545			157,99			HB 2 Kreimeyer
		HB Kampwerth	3458296	5770781	190,61	191,32		,.0	HB Kampwerth
029570207	HB	I ID Kallipweitii							

Gemeindewerke Steinhagen GmbH Beweissicherung Wasserwerk Patthorst

Projekt-Nr.: 1810j-18

Unbeeinflusste Referenzmessstellen mit klimatisch bedingter Abweichung für Oktober 2021

Bez. d. Grundwassermessstelle	18	20	III/3a	45
GOK [m+NN]	101,11	98,42	91,89	96,31
MP [m+NN]	101,84	99,17	91,71	96,81
Mittelwert Gesamtzeitraum	99,79	94,93	89,01	89,35
Wst. 10/2003 (Referenzzustand)	98,78	94,07	88,43	88,90
Wst. 10/2021	98,80	94,43	88,29	88,81
Differenz 10/03 - Mittel ges	-1,01	-0,86	-0,58	-0,45
Differenz 10/21 - Mittel ges	-0,99	-0,50	-0,72	-0,54

(Differenzen: minus = tiefer als Bezugswert, + = höher als Bezugswert)

Auswahlmessstellen Abweichung 10/03 =	-0,72
Auswahlmessstellen Abweichung 10/21 =	-0,69
Differenz 10/21 - Bezugszeitpunkt 10/03 =	0,04

Anhang 2: Fördermengen

Gemeindewerke Steinhagen Wasserwerk Patthorst

Hydrogeologische Beweissicherung 2021 Proj.-Nr.: 1810j-18

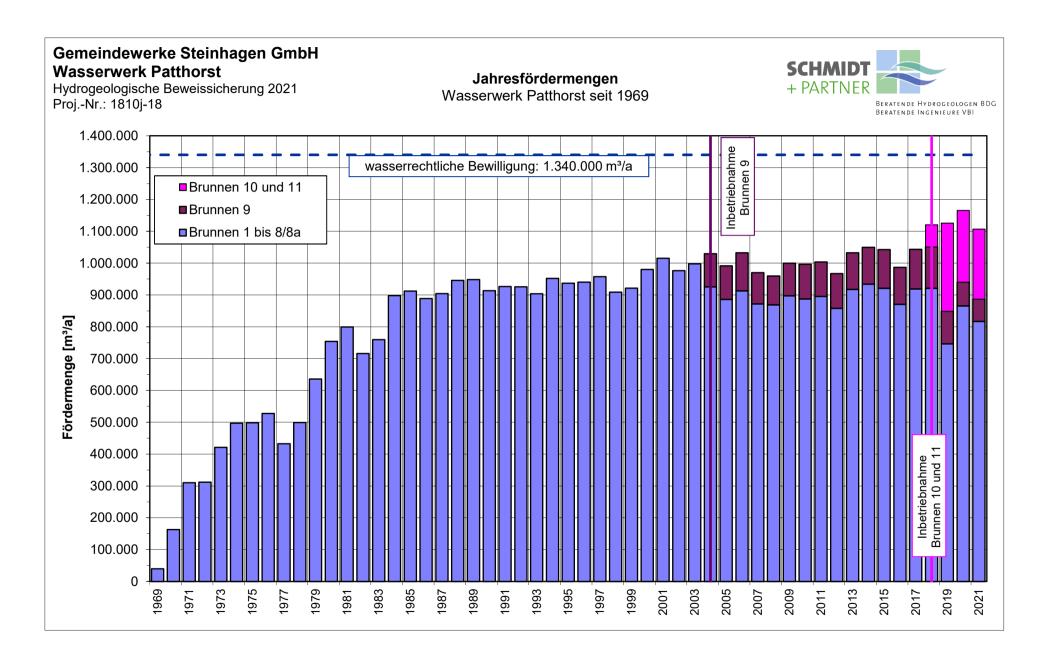
Monatsmengen

Datum	Summe	Brunnen 1	Brunnen 2/ 2a	Brunnen 3	Brunnen 4	Brunnen 5	Brunnen 6	Brunnen 7/ 7a	Brunnen 8/8a	Brunnen 9	Brunnen 10	Brunnen 11
	[m³]	[m³]	[m³]	[m³]	[m³]	[m³]	[m³]	[m³]	[m³]	[m³]	[m³]	[m³]
Jan 19	89.123	7.039	7.853	17.117	14.881	0	0	6.551	8.841	8.802	6.718	11.321
Feb 19	80.313	6.328	0	17.660	15.751	0	0	5.738	7.994	7.749	7.504	11.589
Mrz 19	87.650	6.926	0	19.170	17.394	0	0	6.153	8.763	8.413	8.233	12.598
Apr 19	88.463	6.860	0	18.917	18.933	0	0	5.956	8.779	8.342	8.207	12.469
Mai 19	98.331	7.914	0	21.832	21.895	0	0	6.838	5.974	9.733	9.692	14.453
Jun 19	112.847	8.529		24.171	24.192	0			9.316	11.200	11.099	16.611
Jul 19	109.820	8.798	7.605	19.737	19.889	0	0		5.398	10.847	10.605	18.658
Aug 19	97.675	7.500	11.392	17.195	17.232	0	0		5.376	7.567	7.907	16.777
Sep 19	86.496	7.445	509	17.106	17.286	0	0	6.459	5.352	7.561	7.988	16.790
Okt 19	86.127	7.040	0	17.241	17.538	0			5.364	7.582	7.816	16.792
Nov 19	96.034	7.153	13.459	16.400	16.754	0			5.096	7.216	6.966	16.052
Dez 19	93.023	7.548	13.107	16.045	16.158	0	0	7.052	5.205	7.444	7.245	13.219
Jan 20	100.889	7.897	15.349	17.202	17.487	0	0	7.257	5.446	7.853	7.705	14.693
Feb 20	87.276	7.176		15.781	16.161	0			4.990	7.279	7.123	12.147
Mrz 20	90.688	7.411	16.861	16.456		0	0		5.204	5.305	7.024	10.405
Apr 20	108.055	8.158		18.316		0	0		5.805	5.558	7.569	11.642
Mai 20	109.091	8.513	26.296	18.863	19.781	0	0		4.444	5.473	8.024	12.248
Jun 20	100.105	7.708	25.205	17.132	18.037	0			3.010	6.192	7.385	10.445
Jul 20	94.717	7.374	23.951	16.030	17.011	0	0		0	7.095	6.958	11.583
Aug 20	106.390	7.890	26.248	17.201	19.507	0			0	7.854	8.277	13.847
Sep 20	90.901	6.895	21.680	15.030	17.920	0	0		0	6.859	6.736	11.234
Okt 20	93.653	6.031	19.399	16.022	19.286	0	0		6.355	5.267	7.127	9.361
Nov 20	92.482	7.315	19.888	15.178	15.972	0			7.410	4.960	7.301	9.529
Dez 20	91.214	7.278	19.909	14.894	14.925	0	0		7.414	4.938	7.261	9.677
Jan 21	88.898	7.079	19.381	14.488	14.725	0	0		7.201	4.798	7.051	9.396
Feb 21	84.141	6.716	18.333	13.732	14.197	0			6.750	3.804	6.436	9.684
Mrz 21	95.484	1.770	21.484	15.962	15.682	0			7.470	7.105	7.993	12.768
Apr 21	93.311	0		15.159	14.800	0			7.624	7.577	7.520	12.630
Mai 21	96.200	0		15.318	16.222	0	0		7.783	7.756	7.578	12.605
Jun 21	108.436	0	23.067	15.922	20.775	0	0		8.352	8.352	8.515	15.099
Jul 21	90.830	5.665	17.187	13.320	19.149	0			6.975	5.764	5.552	11.431
Aug 21	92.409	11.498	16.060	14.246		0			5.524	4.987	4.854	9.683
Sep 21	90.046	11.059	18.994	16.225	9.807	0	0		6.038	4.999	5.887	12.059
Okt 21	88.889	17.948	20.337	18.269	0	0			5.060	5.034	4.909	12.318
Nov 21	86.142	17.426	19.752	17.603	0	0			4.912	4.882	4.759	11.943
Dez 21	91.905	14.945	20.588	18.145	2.534	0	0	5.060	6.354	5.071	4.940	14.266

Uez 21 91.905 14.945 20.588 1

Spülwasser: Brunnen 2a von Juli 2019 - 20.02.2020

Brunnen 8a von Oktober - 05.11.2020


stichtagsrelevante Fördermengen im aktuellen Berichtsjahr

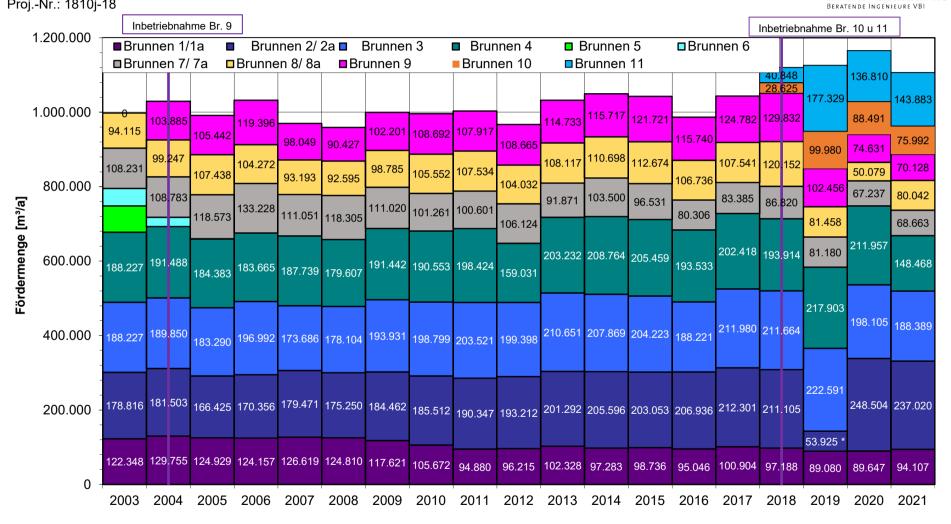
Jahresmengen seit 1982

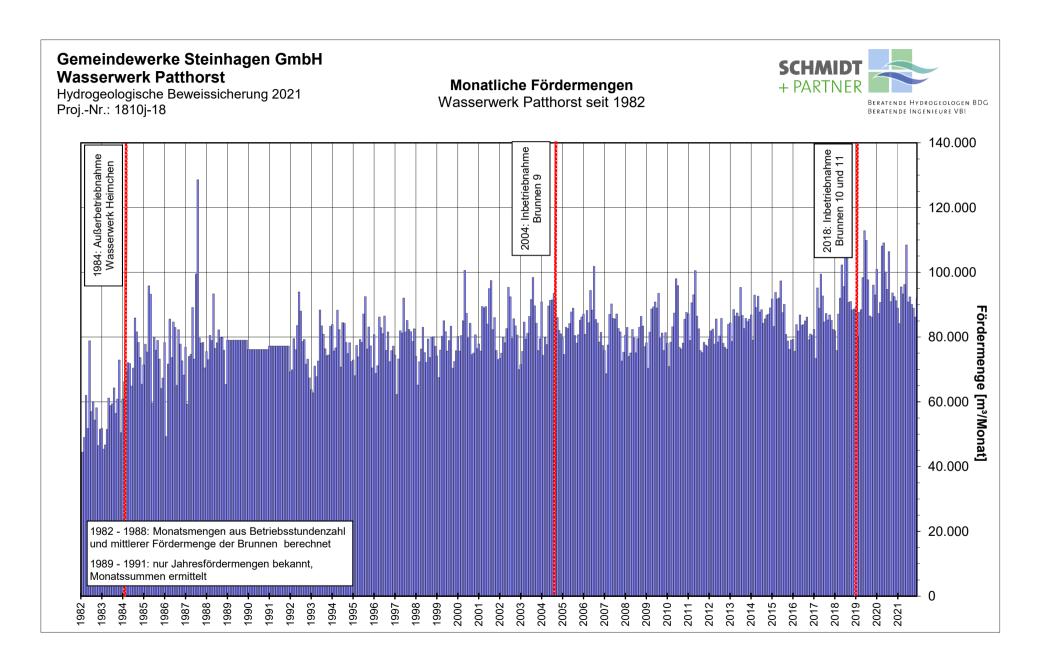
Datum	Summe	Brunnen 1	Brunnen 2/ 2a	Brunnen 3	Brunnen 4	Brunnen 5	Brunnen 6	Brunnen 7/ 7a	Brunnen 8/8a	Brunnen 9	Brunnen 10	Brunnen 11
- Dataii	[m³/a]	[m³/a]	[m³/a]	[m³/a]	[m³/a]	[m³/a]	[m³/a]	[m³/a]	[m³/a]	[m³/a]	[m³]	[m³]
1982	613.499	97.125	88.960	96.740	96.530	55.440	55.440	55.440	67.824	0		
1983	679.556	108.220	99.104	106.365	107.205	61.320	61.300	61.200	74.842	0		
1984	860.678	136.605	124.320	134.505	135.975	77.880	77.900	77.940	95.553	0		
1985	912.806	144.375	132.064	143.570	144.165	82.520	82.460	82.480	101.172	0		
1986	892,105	141.190	129.120	140.350	140.875	80.560	80.560	80.560	98.890	0		
1987	981.646	156.625	143.264	155.680	156.380	89.500	89.500	89.500	101.197	0		
1988	939.382	149.415	136.704	148.400	146.825	85.360	85.360	85.140	102.178	0		
1989	947.970									0		
1990	913.344									0		
1991	926.134									0		
1992	930.123	131.304	125.965	186.514	173.043	54.000	54.621	107.834	96.842	0		
1993	898.881	125.582	124.895	180.811	168.872	56.255	53.361	95.275	93.829	0		
1994	950.138	134.184	138.661	190.734	185.132	49.212	55.791	92.219	104.203	0		
1995	936.563	128.320	130.463	175.957	173.219	50.466	79.631	89.277	109.228	0		
1996	940.072	126.469	138.210	181.234	171.337	64.461	57.827	87.933	112.601	0		
1997	956.986	131.440	147.585	185.028	176.918	56.934	56.134	88.877	114.070	0		
1998	908.616	111.435	162.864	171.437	171.437	64.288	42.859	98.577	85.719	0		
1999	921.069	112.963	165.096	173.787	173.787	65.168	43.447	99.928	86.893	0		
2000	979.958	120.185	175.653	184.897	184.897	69.336	46.225	106.317	92.448	0		
2001	1.014.880	124.466	181.913	191.486	191.486	71.807	47.873	110.105	95.744	0		
2002	975.897	119.687	174.924	184.131	184.131	69.049	46.032	105.877	92.066	0		
2003	997.605	122.348	178.816	188.227	188.227	70.585	47.056	108.231	94.115	0		
2004	1.029.395	129.755	181.503	189.850	191.488	0	24.884	108.783	99.247	103.885		
2005	991.270	124.929	166.425	183.290	184.383	1	789	118.573	107.438	105.442		
2006	1.032.067	124.157	170.356	196.992	183.665	1	0	133.228	104.272	119.396		
2007	969.808	126.619	179.471	173.686	187.739	0	0	111.051	93.193	98.049		
2008	959.098	124.810	175.250	178.104	179.607	0	0	118.305	92.595	90.427		
2009	999.462	117.621	184.462	193.931	191.442	0	0	111.020	98.785	102.201		
2010	996.042	105.672	185.512	198.799	190.553	0	0	101.261	105.552	108.692		
2011	1.003.224	94.880	190.347	203.521	198.424	0	0	100.601	107.534	107.917		
2012	966.677	96.215	193.212	199.398	159.031	0	0	106.124	104.032	108.665		
2013	1.032.224	102.328	201.292	210.651	203.232	0	0	91.871	108.117	114.733		
2014	1.049.427	97.283	205.596	207.869	208.764	0	0	103.500	110.698	115.717		
2015	1.042.397	98.736	203.053	204.223	205.459	0	0	96.531	112.674	121.721		
2016	986.518	95.046	206.936	188.221	193.533	0	0	80.306	106.736	115.740		
2017	1.043.311	100.904	212.301	211.980	202.418	0	0	83.385	107.541	124.782	00.005	40.040
2018	1.120.148	97.188	211.105	211.664	193.914	0	0	86.820	120.152	129.832	28.625	40.848
2019	1.125.902	89.080	53.925 *	222.591	217.903	0	0	81.180	81.458	102.456	99.980	177.329
2020	1.165.461	89.647	248.504	198.105	211.957	0	0	67.237	50.079	74.631	88.491	136.810
2021	1.106.692	94.107	237.020	188.389	148.468	0	0	68.663	80.042 orunnen 2a ah 02	70.128	75.992	143.883

* Brunnen 2 ab 02/2019 außer Betrieb genommen; vollständige Inbetriebnahme des Ersatzbrunnen 2a ab 02/2020

810j-18-beweis-21.xlsx, Tab-FM-Brunnen 1 von 5

1810j-18-beweis-21.xlsx, Dia-FM-Jahr 2 von 5

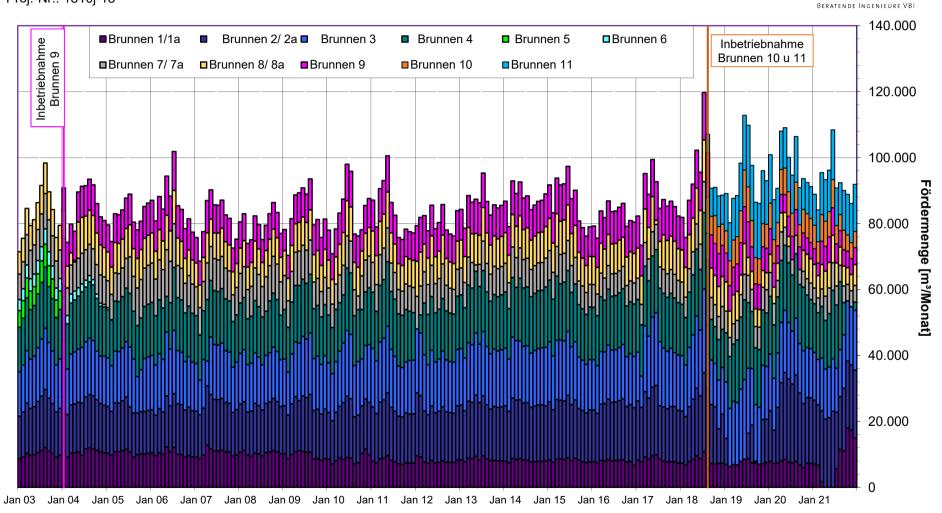

Gemeindewerke Steinhagen GmbH **Wasserwerk Patthorst**


Hydrogeologische Beweissicherung 2021

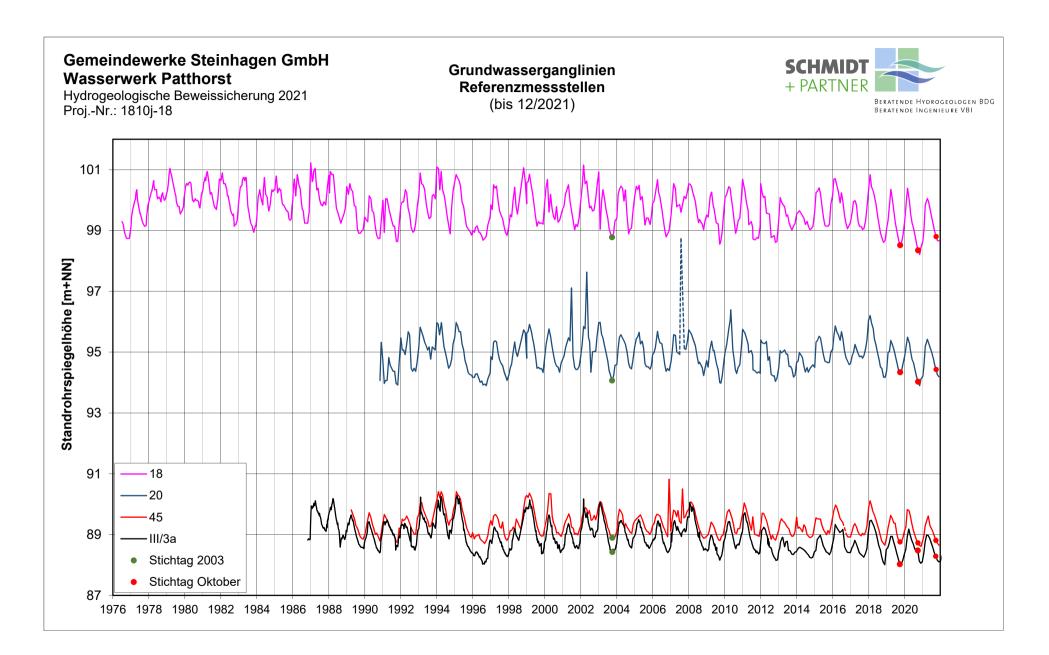
Proj.-Nr.: 1810j-18

Jährliche Fördermengen Brunnen 1 bis 11 seit 2003

1810j-18-beweis-21.xlsx, Dia-FM-Monat 4 von 5


Gemeindewerke Steinhagen GmbH Wasserwerk Patthorst

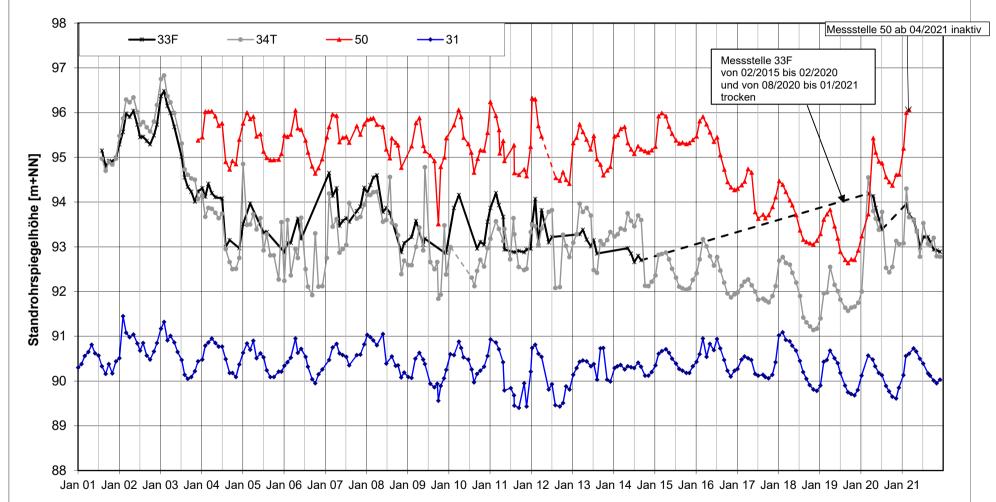
Hydrogeologische Beweissicherung 2021


Proj.-Nr.: 1810j-18

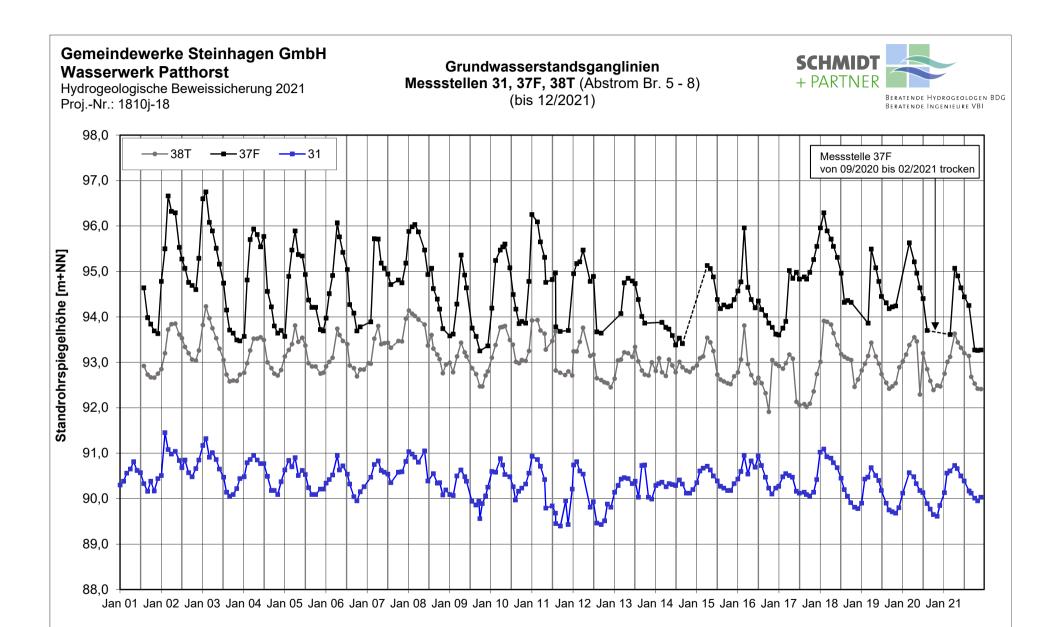
Monatliche Fördermengen Brunnen 1 bis 11 seit 2003

Anhang 3: Grundwasserstandsganglinien

1810j-18-beweis-21.xlsx; Dia-Referenz 1 von 11

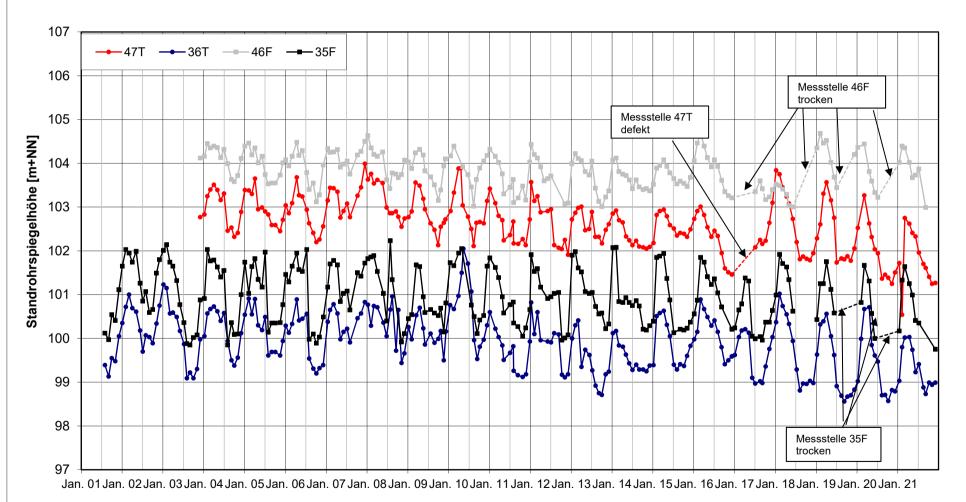

Gemeindewerke Steinhagen GmbH **Wasserwerk Patthorst**

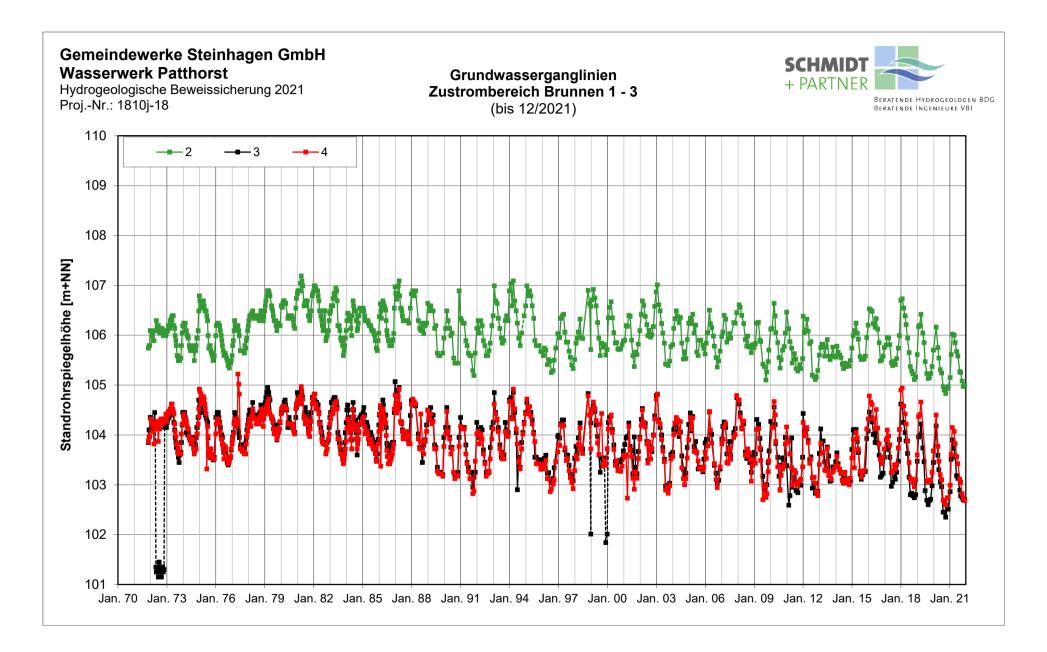
Hydrogeologische Beweissicherung 2021


Proj.-Nr.: 1810j-18

Grundwasserganglinien Messstellen 33F, 34T (Nähe Br. 9), 50, 31 (bis 12/2021)

1810j-18-beweis-21.xlsx; Dia-33F-34T 2 von 11

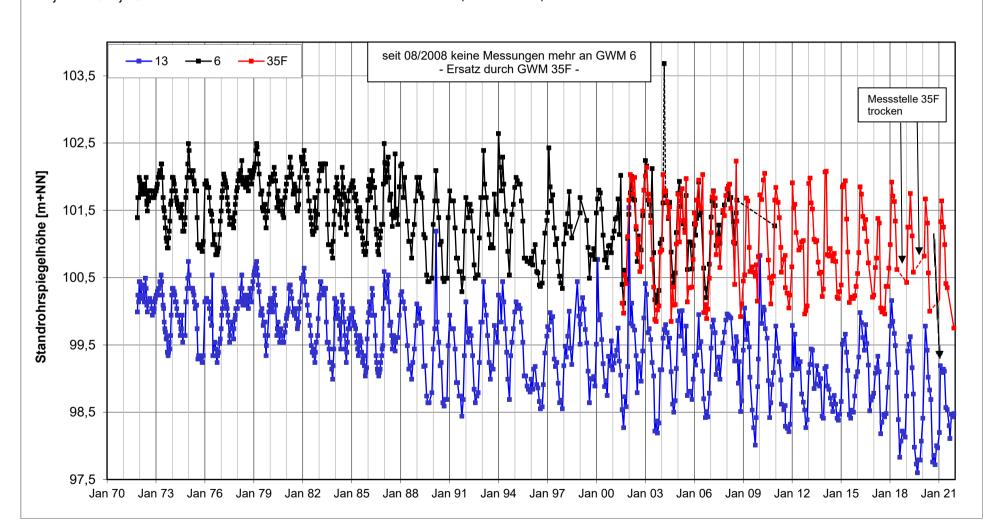

1810j-18-beweis-21.xlsx; Dia-31-37F-38T 3 von 11


Gemeindewerke Steinhagen GmbH Wasserwerk Patthorst

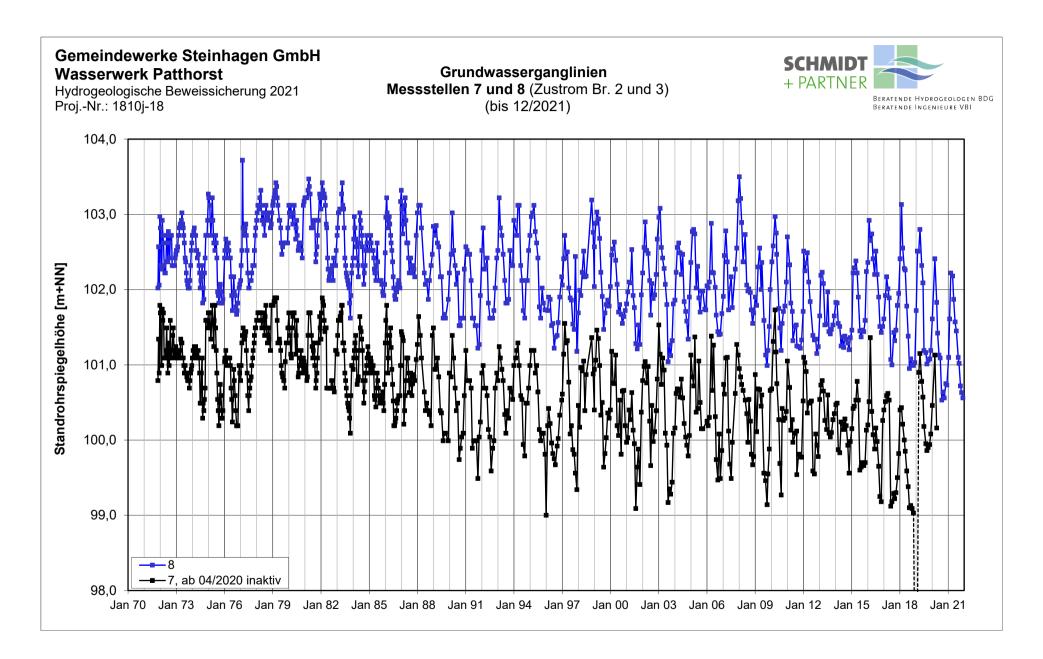
Hydrogeologische Beweissicherung 2021 Proj.-Nr.: 1810j-18

Grundwasserganglinien Messstellen 35F, 36T, 46F, 47T (Zustrom Br. 1 - 4) (bis 12/2021)

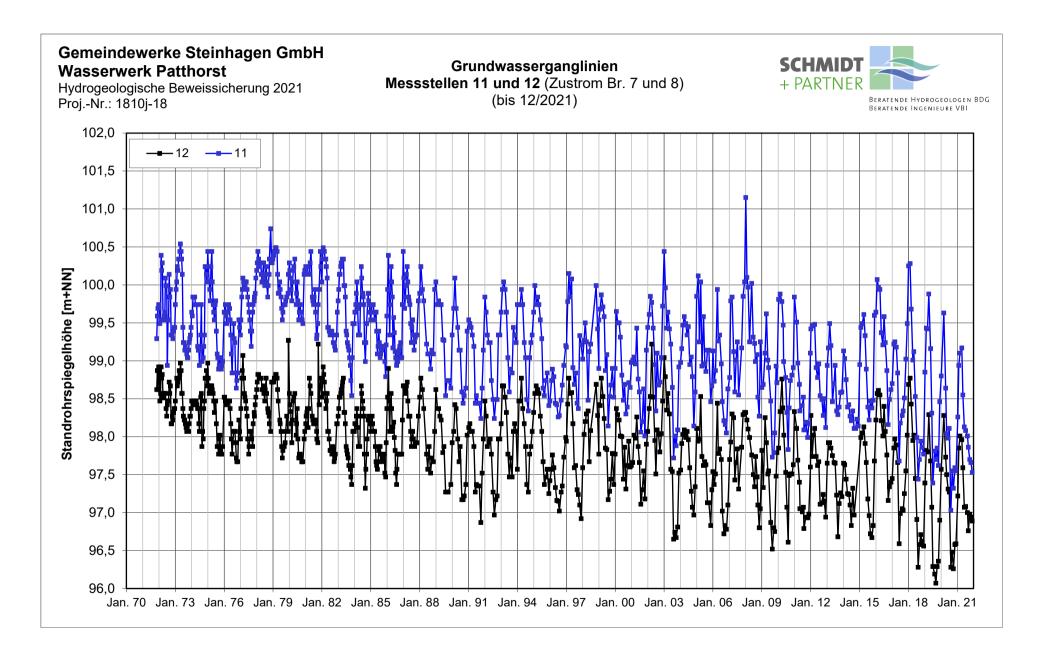
1810j-18-beweis-21.xlsx; Dia-2-3-4 5 von 11

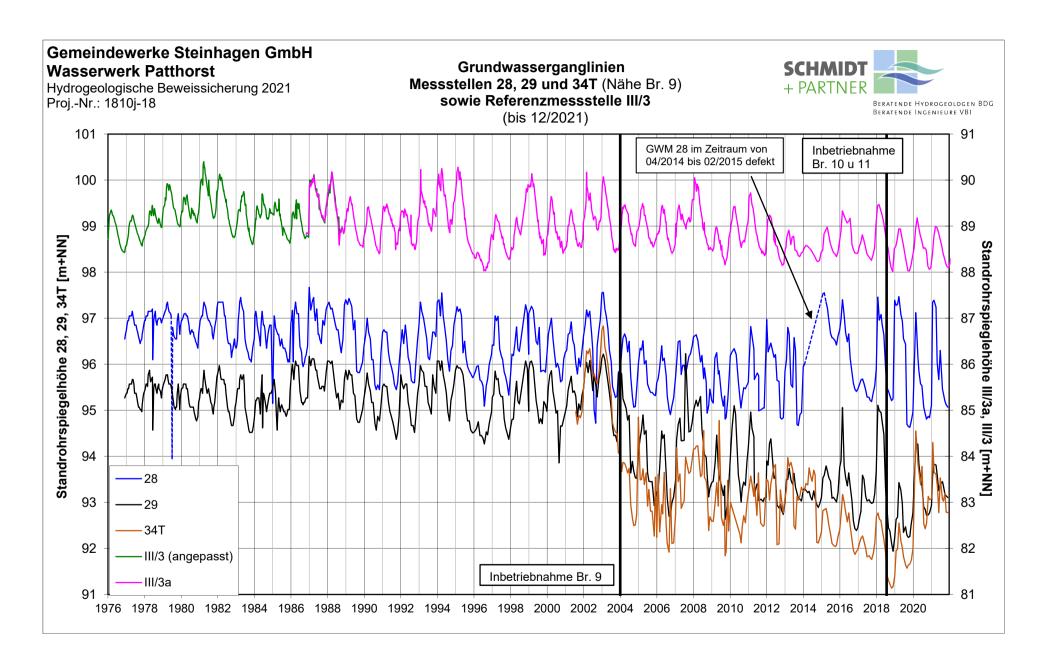

Gemeindewerke Steinhagen GmbH **Wasserwerk Patthorst**

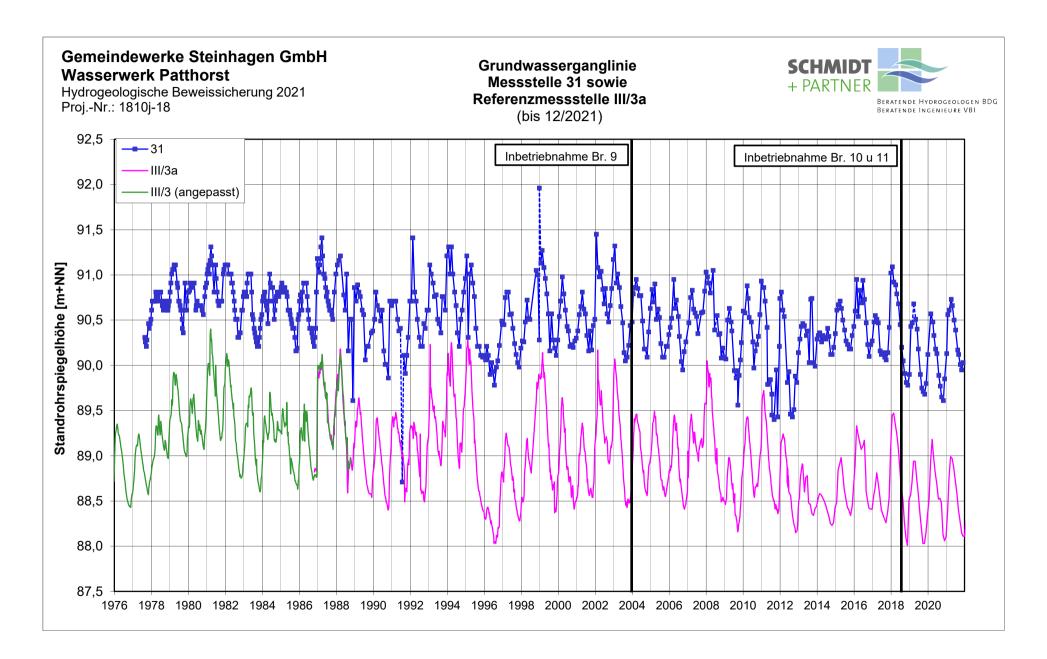
Hydrogeologische Beweissicherung 2021

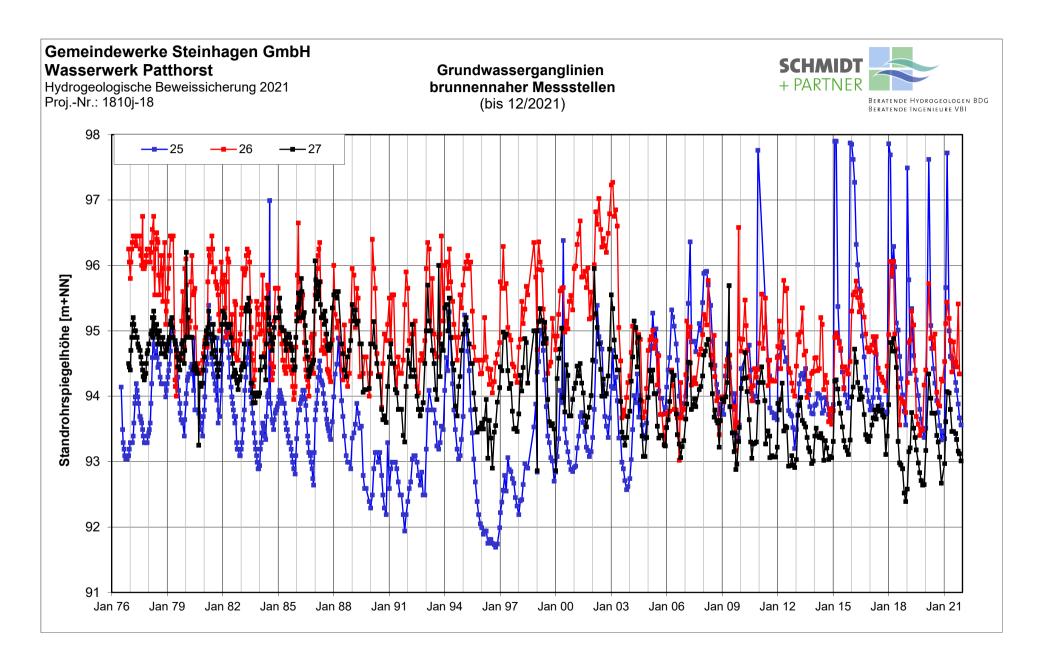

Proj.-Nr.: 1810j-18

Grundwasserganglinien Messstellen 6 und 13 (Zustrom Br. 5 und 6) (bis 12/2021)




1810j-18-beweis-21.xlsx; Dia-6-13-35F 6 von 11


1810j-18-beweis-21.xlsx; Dia-7-8 7 von 11


1810j-18-beweis-21.xlsx; Dia-11-12 8 von 11

1810j-18-beweis-21.xlsx; Dia-28-29-34T 9 von 11

1810j-18-beweis-21.xlsx; Dia-31 10 von 11

1810j-18-beweis-21.xlsx; Dia-25-26-27 11 von 11

Anhang 4: Niederschlagsentwicklung

 Langjähriger Durchschnitt (1994 - 2021) der Niederschlagsmenge im

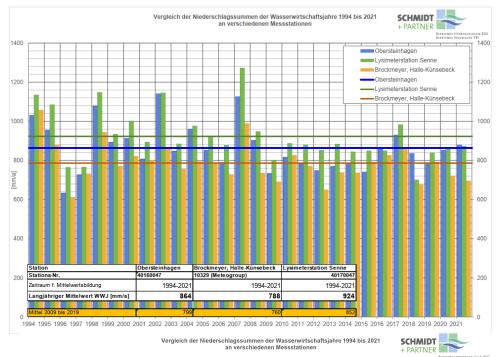
 Wasserwirtschaftsjahr (Nov. bis Okt.) =
 924
 mm

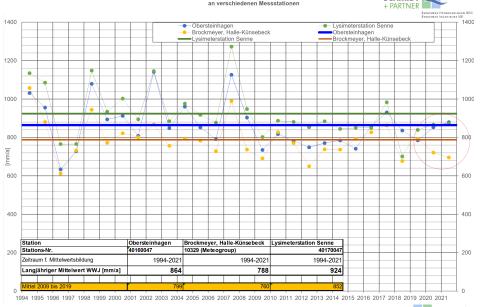
 Winterhalbjahr (Nov. bis Apr.) =
 453
 mm
 924 mm/a 453 mm/6 Monate 471 mm/6 Monate Sommerhalbjahr (Mai bis Okt.) =

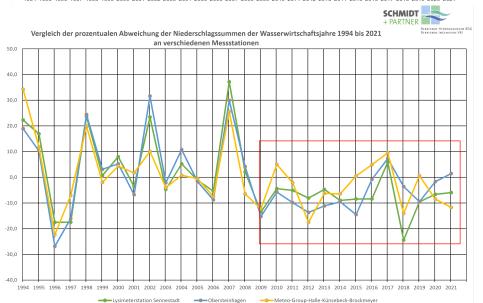
Wasse	rwirtschaftsjahr (Nov. bis Okt	.) =
Winte	halbjahr (Nov. bis Apr.) =	
Somm	erhalbjahr (Mai bis Okt.) =	

<u>smenge im</u>
864 mm/a
414 mm/6 Monate
450 mm/6 Monate

Langjähriger Durchschnitt (1994 - 2021) der Niederschlagsmenge im													
Wasserwirtschaftsjahr (Nov. bis Okt.) =	788	mm/a											
Winterhalbjahr (Nov. bis Apr.) =	376	mm/6 Monate											
Sommerhalbjahr (Mai bis Okt.) =	412	mm/6 Monate											


	Station	Senne		1									
	W	interhalb	jahr	Soi	mmerhall	bjahr	WW- Gesamtjahr						
	Summe	Abw	eichung	Summe	Abw	eichung	Summe Abweichung						
	[mm]	[%]	[mm]	[mm]	[%]	[mm]	[mm]	[%]	[mm]				
1993				582,2	23,7	111,7	1154,1						
1994	600,4	32,7	147,9	534,3	13,6	63,8	1134,7	22,8	211,0				
1995	641,4	41,7	188,9	443,6	-5,7	-26,9	1085,0	17,5	161,3				
1996	197,9	-56,3	-254,6	567,5	20,6	97,0	765,4	-17,1	-158,3				
1997	383,1	-15,3	-69,4	382,8	-18,6 -87,7		765,9	-17,1	-157,8				
1998	454,2	0,4	1,7	693,7	47,4	223,2	1147,9	24,3	224,2				
1999	520,7	15,1	68,2	413,5	-12,1	-57,0	934,2	1,1	10,5				
2000	590,7	30,5	138,2	411,5	-12,5	-59,0	1002,2	8,5	78,5				
2001	460,0	1,7	7,5	434,4	-7,7	-36,1	894,4	-3,2	-29,3				
2002	570,3	26,0	117,8	575,2	22,3	104,7	1145,5	24,0	221,8				
2003	474,3	4,8	21,8	410,1	-12,8	-60,4	884,4	-4,3	-39,3				
2004	435,4	-3,8	-17,1	540,9	15,0	70,4	976,3	5,7	52,6				
2005	441,1	-2,5	-11,4	476,5	1,3	6,0	917,6	-0,7	-6,1				
2006	456,4	0,9	3,9	420,9	-10,5	-49,6	877,3	-5,0	-46,4				
2007	505,0	11,6	52,5	767,8	63,2	297,3	1272,8	37,8	349,1				
2008	520,4	15,0	67,9	427,2	-9,2	-43,3	947,6	2,6	23,9				
2009	367,0	-18,9	-85,5	435,1	-7,5	-35,4	802,1	-13,2	-121,6				
2010	462,1	2,1	9,6	424,7	-9,7	-45,8	886,8	-4,0	-36,9				
2011	455,5	0,7	3,0	425,3	-9,6	-45,2	880,8	-4,6	-42,9				
2012	423,6	-6,4	-28,9	429,3	-8,8	-41,2	852,9	-7,7	-70,8				
2013	406,3	-10,2	-46,2	477,7	1,5	7,2	884,0	-4,3	-39,7				
2014	330,4	-27,0	-122,1	513,9	9,2	43,4	844,3	-8,6	-79,4				
2015	401,7	-11,2	-50,8	447,8	-4,8	-22,7	849,5	-8,0	-74,2				
2016	489,4	8,2	36,9	360,6	-23,4	-109,9	850,0	-8,0	-73,7				
2017	338,6	-25,2	-113,9	644,2	36,9	173,7	982,8	6,4	59,1				
2018	471,0	4,1	18,5	230,2	-51,1	-240,3	701,2	-24,1	-222,5				
2019	460,4	1,7	7,9	378,9	-19,5	-91,6	839,3	-9,1	-84,4				
2020	459,2	1,5	6,7	407,4	-13,4	-63,1	866,6	-6,2	-57,1				
2021	373,0	-17,6	-79,5	499,6	6,2	29,1	872,6	-5,5	-51,1				
2022	434,0	-4,1	-18,5										


St	ation Ober				ssstellen							
	W	interhalb		Soi	mmerhall		WV	/- Gesamtjahr				
	Summe		eichung	Summe		eichung	Summe	Abweichung				
	[mm]	[%]	[mm]	[mm]	[%]	[mm]	[mm]	[%]	[mm]			
1993				533,3	18,5	83,4						
1994	517,8	25,1	104,0	513,3	14,1	63,4	1031,1	19,4	167,4			
1995	598,1	44,5	184,3	357,4	-20,6	-92,5	955,5	10,6	91,8			
1996	177,2	-57,2	-236,6	456,7	1,5	6,8	633,9	-26,6	-229,8			
1997	352,2	-14,9	-61,6	375,6	-16,5	-74,3	727,8 -15,7		-135,9			
1998	408,2	-1,4	-5,6	670,8	670,8 49,1		1079,0	24,9	215,3			
1999	482,1	16,5	68,3	411,8	-8,5	-38,1	893,9	3,5	30,2			
2000	488,9	18,1	75,1	423,5	-5,9	-26,4	912,4	5,6	48,7			
2001	410,0	-0,9	-3,8	398,3	-11,5	-51,6	808,3	-6,4	-55,4			
2002	510,2	23,3	96,4	630,8	40,2	180,9	1141,0	32,1	277,3			
2003	436,1	5,4	22,3	412,2	-8,4	-37,7	848,3	-1,8	-15,4			
2004	442,1	6,8	28,3	518,2	15,2	68,3	960,3	11,2	96,6			
2005	409,8	-1,0	-4,0	442,2	-1,7	-7,7	852,0	-1,4	-11,7			
2006	386,0	-6,7	-27,8	404,9	-10,0	-45,0	790,9	-8,4	-72,8			
2007	436,4	5,5	22,6	689,9	53,3	240,0	1126,3	30,4	262,6			
2008	475,1	14,8	61,3	428,2	-4,8	-21,7	903,3	4,6	39,6			
2009	309,6	-25,2	-104,2	424,9	-5,6	-25,0	734,5	-15,0	-129,2			
2010	409,6	-1,0	-4,2	407,6	-9,4 -42,3		817,2	-5,4	-46,5			
2011	379,7	-8,2	-34,1	402,0	-10,6	-47,9	781,7	-9,5	-82,0			
2012	357,7	-13,6	-56,1	390,7	-13,2	-59,2	748,4	-13,3	-115,3			
2013	317,8	-23,2	-96,0	452,6	0,6	2,7	770,4	-10,8	-93,3			
2014	277,1	-33,0	-136,7	507,2	12,7	57,3	784,3	-9,2	-79,4			
2015	369,1	-10,8	-44,7	372,0	-17,3	-77,9	741,1	-14,2	-122,6			
2016	478,5	15,6	64,7	381,7	-15,2	-68,2	860,2	-0,4	-3,5			
2017	313,3	-24,3	-100,5	616,6	37,1	166,7	929,9	7,7	66,2			
2018	533,6	29,0	119,8	302,4	-32,8	-147,5	836,0	-3,2	-27,7			
2019	454,5	9,8	40,7	330,2	-26,6	-119,7	784,7	-9,1	-79,0			
2020	461,3	11,5	47,5	391,1	-13,1	-58,8	852,4	-1,3	-11,3			
2021	394,7	-4,6	-19,1	484,8	7,8	34,9	879,5	1,8	15,8			
2022	376,9	-8,9	-36,9									


Summe Abweichung [mm] [%] [mm] Summe 528,10 40,5 1057,50 528,10 40,5 542,00 44,1 149,30 -60,3 364,00 -3,2 376,60 0,2 400,00 6,4 418,70 11,4 394,70 5,0 401,50 6,8 393,30 4,6 345,50 -8,1 318,80 -15 2 529,40 **28,6** 1995 1996 1997 1998 338,40 -17,8 462,60 12,3 367,90 -10,7 568,00 37,9 372,20 -9,6 403,30 -2,1 406,50 -1,3 465,70 13,1 363,00 -11,9 448,40 8,9 464,70 12,8 379,60 -7,8 603,00 46,4 433,30 8,9 443,40 0,4 448,30 8,9 422,30 2,5 327,70 20,4 426,80 3,6 455,00 12,9 447,40 8,6 370,60 12,9 447,40 8,6 370,60 12,9 447,40 8,6 370,60 10,0 495,40 20,3 221,80 46,1 342,60 11,9 342,60 11,9 342,60 11,9 342,60 11,9 343,60 12,9 344,60 11,9 345,60 12,9 347,40 8,6 348,60 12,9 347,60 11,0 348,60 12,9 349,60 11,0 349,60 11,0 342,60 11,0 880,40 611,90 731,90 944,60 772,20 822,00 801,20 867,20 756,30 793,90 728,60 989,00 736,60 691,10 827,30 771,10 649,60 738,20 736,80 791,90 826,50 862,70 677,10 792,40 720,80 695,50 271,80 344,50 455,90 367,30 455,30 449,80 407,30 349,50 346,00

rot = im Vergleich zum langjährigen Mittelwert niederschlagsdefizitär blau = im Vergleich zum langjährigen Mittelwert niederschlagsreich

rot = im Vergleich zum langjährigen Mittelwert niederschlagsdefizitär blau = im Vergleich zum langjährigen Mittelwert niederschlagsreich

Anhang 5: Hydrochemie

Anhang 5.1: Ergebnisse der hydrochemischen Analysen (Tabelle, 5 Jahre)

Anhang 5.2: Hydrochemische Entwicklung an den Förderbrunnen (Grafiken)

Gemeindewerke Steinhagen GmbH

Wasserwerk Patthorst Hydrogeologische Beweissicherung 2020 Proj.-Nr.: 1810j-17

ProjNr.: 1810j-17																									E	BERATENDE HYDRO BERATENDE INGENI	OGEOLOGEN BDG HEURE VBI
Parameter	Einheit	Grenzwerte																									
						Brunnen 2a	Brunnen 2a																				
		TrinkwV	Brunnen 1	Brunnen 1	Brunnen 1a	(vor Inbetrieb-	(vor Inbetrieb-	Brunnen 2a	Brunnen 2a	Brunnen 2a	Brunnen 2a	Brunnen 2a	Brunnen 2a	Brunnen 2a	Brunnen 2a	Brunnen 3	Brunnen 3	Brunnen 3	Brunnen 3	Brunnen 4	Brunnen 4	Brunnen 4	Brunnen 7	Brunnen 7	Brunnen 7	Brunnen 7	Brunnen 7
						nahme)	nahme)																			1	
Probenahmedatum Färbung (SAK Hg 436 nm)	1/m	0,5	19.09.2019	29.09.2020	21./30.09.2021	27.06.2019	14.02.2020 0.1	02.03.2020	10.03.2020	23.03.2020	30.03.2020	01.04.2020	15.05.2020	05.02.2021	20.04.2021	19.09.2019	01.04.2020	29.09.2020	21.09.2021	24.05.2019	10.03.2020	20.04.2021	24.05.2019	19.09.2019	01.04.2020	29.09.2020	21.09.2021
Trübung	FNU	1	0,02	0,07	0,35		0,04		0,02						0,03	0,02		0,07	0,32		0,12	0,10		0,37		1,54	0,64
Geruch Bodensatz	ml/l																									 	+
Temperatur	°C		10,8	10,8	10,6	10,9			10,4						10,8	11,3		10,9	11,1		10,5	10,8		10,6		10,7	10,7
pH-Wert elektr.Leitfähigkeit	μS/cm	6,5 - 9,5 2790	7,40 559	7,54 511	7,48 544	7,50 543	7,68 515		7,55 546						7,47 560	7,53 523		7,49 490	7,41 521		7,41 504	7,34 503		7,44 500		7,00 493	7,44 525
UV-Extinktion 254 nm	m-1	0.5	1,0	1,3	1,3	1,2	< 0.0E		1,8						1,7	1,8		1,7	1,6		3,2	3,1		3,1		3,6	3,3
Ammonium Calcium	mg/l mg/l	0,5	<0,1 81,6	< 0,1 88,4	< 0,05 88,1	<0,1 79,0	< 0,05		< 0,05 92,7						< 0,05 93,6	< 0,1 81,6		< 0,05 86,0	< 0,05 92,4		< 0,1 86,3	< 0,05 87,5		<0,1 78,2		0,05 88,1	<0,05 84,4
Kalium Magnesium	mg/l mg/l	50	1,5 3,1	1,5 2,9	1,4 2,8	4,2 3,1			3,8 2,8						3,3 2,8	1,8 2,8		1,8 2,9	2,9		1,7 3,3	1,8 3,3		1,4 3,0		1,4 3,1	1,3 3,0
Natrium	mg/l	200	15,4	14,0	15,4	14,2			14,0						14,4	10,8		10,3	11,0		9,9	10,4		12,0		11,6	11,8
Gesamt-Härte Karbonat Härte	°dH		12,1	13	13	11,8			13,6						13,7	12,1		12,7	13,6		12,8	13		11,6		13,0	12,5
Chlorid	mg/l	250	-4	28	31	26			29 <1,0						30	21		24	24		22 < 1,6	21		22		23	23
DOC TOC	mg/l		<1	<1	0,6	<0,1			<1,0						<0,7	<0,01		<1	0,5		< 1,0	0,9		1,6		1,8	1,0
Eisen Basekapazität bis pH 8,2	mg/l mmol/l	0,2	<0,01 0,22	<0,01 0,28	<0,01 0,21	<1,0 0,25			< 0,01 0,31						< 0,01 0,31	< 0,01 0,25		< 0,01 0,28	< 0,01 0,25		0,01 0,29	< 0,01 0,33		0,13 0,23		0,28 0,33	0,10 0,26
Säurekapazität bis pH 4.3	mmol/l		3,11	3,33	3,23	3,40			3,58						3,56	3,28		3,24	3,30		3,35	3,41		3,00		3,22	3,02
Hydrogenkarbonat Mangan	mg/l mg/l	0,05	189,7 <0,01	203,1 <0,01	197,0 <0,01	207,4 <0,01			218,4 < 0,01						217,2 < 0,01	200,1 <0,01		197,6 < 0,01	201,3 0,01		204,4 < 0,01	208,0 0,01		183,0 0,03		196,4 0,04	184,2 0,03
Nitrat Nitrit	mg/l	50 0,5	24 <0,02	23 <0,02	24 <0,02	28 <0,02			28 < 0,02						28 < 0,02	24 <0,02		25 <0,02	25 <0,02	18	22 <0,02	19 0,02	14	15 < 0,02		14 < 0,02	14
Phosphat, ortho	mg/l mg/l	0,5	0,04	0,04	0,04	0,09			0,09						0,09	<0,04		<0,04	<0,04		<0,04	<0,04		<0,04		0,06	< 0,02 <0,04
Sauerstoff Sulfat	mg/l mg/l	250	4,70 51	6,43 49	6,70 51	2,9 40			5,8 44						5,0 41	4,32 43		2,72 45	4,26 47		2,1 50	44		3,10 51		2,29 59	5,66 66
Coliforme Bakterien	in 100 ml	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0		0	0	0	0
Escherichia Coli Koloniezahl bei 22°C	in 100 ml in 1 ml	100	0	0	0 10	0 210	0	0	0	0	0	0	0	0	0	0	2	0	0		0	0	-	0	2	0	0
Koloniezahl bei 36°C	in 1 ml	100	0	0	6	160	0	0	0	0	0	4	0	0	0	0	0	0	0		0	0		0	0	0	0
Enterokokken Calcitlösekapazität	in 100 ml mg/l	<u>0</u> 5	 	-	0		0	0		0	0	0	0	0		 	0				<u> </u>				0		+
Kohlensäure, freie Chlor, freies	mg/l mg/l	0 (0,3)						-				ļ		_		-								-	-		I
Oxidierbarkeit	mg/l	5	L														1										1
Aluminium Antimon	mg/l mg/l	0,2 0,005	<0,01	<u> </u>		0,01		<u> </u>			<u> </u>	<u> </u>				<0,01					<u> </u>			<0,01	<u> </u>		上
Arsen Blei	mg/l mg/l	0,01 0,01	<0,002 <0,001			<0,002 <0,001										<0,002 <0,001								<0,002 <0,001			1
Cadmium	mg/l	0,003	<0,001			< 0,001										<0,001								<0,001			1
Kupfer Chrom	mg/l mg/l	2,0 0,05	<0,0005			<0,0005										0,0006								0,0005		 	+
Nickel Quecksilber	mg/l mg/l	0,02 0,001	<0,001 <0,0002			< 0,001 <0,0005										<0,001 <0,0002								<0,001 <0,0002			
Selen	mg/l	0,01	10,0002			10,0000										-0,0002								10,0002			1
Benzol Bor	mg/l mg/l	0,001 1,0																								 	+
Bromat Cyanid	mg/l mg/l	0,01 0,05	<0,01			<0.01										<0,01								<0,01			1
Fluorid	mg/l	1,5	<0,01			<0,15										<0,15								<0,15		<u> </u>	1
Uran AOX	mg/l mg/l	0,01	<0,01			<0,01										<0,01								<0,01			+
Dichlormethan 1,2-Dichlorethan	mg/l mg/l		<0,005			< 0,005										<0,005								<0,005			1
1,1,1-Trichlorethan	mg/l	0.04	<0,001			< 0,001										<0,001								<0,001			1
Tetrachlormethan Trichlorethen	mg/l mg/l	0,01 0,01	<0,001 <0,001			< 0,001 < 0,001										<0,001								<0,001			
Tetrachlorethen Vinylchlorid	mg/l mg/l	0,01 0,0005	<0,001			< 0,001										<0,001								<0,001		 	+
CKW Benzo(a) pyren	mg/l mg/l	(0,01) 0,00001	<0,009			<0,009										<0,009								<0,009			
PAH	mg/l																										
Aldicarb Ametryn	μg/l μg/l	(0,1)																									+
2,4-D 2,6-Dichlorbenzamid	μg/l μg/l	(0,1)	<u> </u>																							<u> </u>	1
Aclonifen	μg/l	(0,1)																									1
Atrazin Bentazon	μg/l μg/l	(0,1)																									
Bifenox Bromacil	μg/l μg/l	(0,1)	<u> </u>																							<u> </u>	1
Bromoxynil	μg/l	(0,1)																									1
Carbetamid Chloridazon	μg/l μg/l	(0,1) (0,1)																									
Chloroxuron Chlortoluron	μg/l μg/l	(0,1)	 									 		·		 	+				<u> </u>						+
Cyanazin Clopyralid	μg/l	(0,1)	ļ					Ĺ				ļ		_										Ĺ	Ĺ	<u> </u>	I
Desethylatrazin	μg/l μg/l	(0,1)																									
Desisopropylatrazin Dicamba	μg/l μg/l	(0,1) (0,1)	1					1				1				1	+							1	1	 	+
Dichlorprop Diflufencian	μg/l μg/l	(0,1)																									1
Dimefuron	μg/l	(0,1)																									1
Dimethenamid Diuron	μg/l μg/l	(0,1)															<u> </u>				<u>L</u>			<u>L</u>		\vdash	\pm
Ethofumesat Flufenacet	μg/l μg/l	(0,1)																									1
Fluoxypyr-1-methylheptylester	μg/l	(0,1)																									1
Flurtamone Hexazinon	μg/l μg/l	(0,1)	1			I		 			1	1	 				+				1			 	 		
loxynil	μg/l	(0,1)																									1
Isoproturon Linuron	μg/l μg/l	(0,1)																									
MCPA Mecoprop	μg/l μg/l	(0,1)	 	-							-	<u> </u>	 			 	 				<u> </u>						+
Metalaxyl-M Metamitron	μg/l	(0,1)	ļ													1	1										1
Metazachlor	μg/l μg/l	(0,1)																									
Methabenzthiazuron Merobromuron	μg/l μg/l	(0,1)	 	-							-	<u> </u>	 			 	 				<u> </u>						+
Metolachlor Metribuzin	μg/l	(0,1)																									1
Metoxuron	μg/l μg/l	(0,1)																									
Monolinuron Pendimethalin	μg/l μg/l	(0,1)	1			I		 			1	1	 				+				1			 	 		
Propyamid	μg/l	(0,1)	Ī														1										1
Prometryn Propazin	μg/l μg/l	(0,1)																									
Quinmerac Sebuthylazin	μg/l μg/l	(0,1)	 					H				 				\vdash	+							H	H		+
Simazin	μg/l	(0,1)																									1
Terbutryn Terbuthylazin	μg/l μg/l	(0,1)	1			1		 				 				1	+							 	 		+
Summe PBSM	μg/l	(0,5)					_																				I

																								NGENIEURE VBI
Parameter	Einheit	Grenzwerte TrinkwV	Brunnen 8	Brunnen 8	Brunnen 8	Brunnen 8a (vor Inbetrieb- nahme)	Brunnen 8a	Brunnen 9	Brunnen 9	Brunnen 9	Brunnen 9	Brunnen 10	Brunnen 10	Brunnen 10	Brunnen 10	Brunnen 10	Brunnen 11	Brunnen 11	Brunnen 11					
Probenahmedatum Färbung (SAK Hg 436 nm)	1/m	0,5	25.03.2019	19.11.2019	10.03.2020	09.10.2020	27.11.2020	11.12.2020	15.01.2021	05.02.2021	23.03.2021	20.04.2021	19.09.2019	29.09.2020	23.03.2021	21.09.2021	25.03.2019	19.11.2019	10.03.2020	15.01.2021	20.04.2021	19.09.2019	29.09.2020	21.09.2021
Trübung Geruch	FNU	1	6,50		0,05	ohne ohne						0,07	0,04	3,53		0,31	0,03		0,03		0,07	0,02	0,05	0,36
Bodensatz Temperatur	ml/l °C		10,2		10,2	10,7						10,0	10,2	11,3		10,3	9,4		9,9		10,1	10,7	10,8	10,9
pH-Wert elektr.Leitfähigkeit	μS/cm	6,5 - 9,5 2790	7,72 552		7,44 546	7,61 553						7,46 548	7,47 475	7,35 438		7,42 453	7,70 487		7,50 473		7,49 475	7,48 538	7,58 502	7,48 536
UV-Extinktion 254 nm	m-1		1		1,3							1,3	5,7	6,6		6,2			2,9		3,0	3,0	3,5	3,6
Ammonium Calcium	mg/l mg/l	0,5	<0,1 89,3		<0,05 91,9	<0,05 100,0						<0,05 94,0	<0,1 74,6	<0,05 78,0		<0,05 76,4	< 0,1 78,9		< 0,1 79,8		< 0,05 81,2	< 0,1 83,9	< 0,1 94,1	< 0,05 93,3
Kalium Magnesium	mg/l mg/l	50	1,1 2,5		1,1 2,7	1,1 2,9						1,1 2,8	3,7 2,1	3,6 2		3,5 2,0	2,1 2,0		1,7 2,0		1,4 2,0	2,4 2,5	2,4 2,5	2,4 2,5
Natrium Gesamt-Härte	mg/l °dH	200	20,8 13,1		13,7 13,5	16,4 14,7						13,9 13,8	10,3 10,9	9,6 11,4		10,2 11,1	10,6 11,5		10,7 11,6		10,5 11,8	11,8 12,3	11,1 13,7	11,3 13,6
Karbonat Härte Chlorid	°dH mg/l	250	27		28	9,4 35						27	19	20		20	22		23		22	21	23	24
DOC TOC	mg/l		< 1,0		< 1,0							0,7	2,6	3,0		2,5	2,2		1,7		2,0	1,7	1,8	1,5
Eisen	mg/l	0,2	0,75		0,01	0,01						0,01	<0,01	0,49		<0,01	<0,01		<0,01		<0,01	<0,01	<0,01	<0,01
Basekapazität bis pH 8,2 Säurekapazität bis pH 4.3	mmol/l mmol/l		0,25 3,25		0,29 3,40	3,35						0,32 3,41	0,24 3,00	0,34 3,07		0,26 2,88	3,03		0,27 3,08		0,30 3,11	0,26 3,58	0,29 3,57	0,29 3,58
Hydrogenkarbonat Mangan	mg/l mg/l	0,05	198,3 < 0,01		207,4 < 0,01	204,4 < 0,01						208,0 < 0,01	183,0 0,03	187,3 0,11		175,7 0,03	184,8 <0,01		187,9 <0,01		189,7 <0,01	<0,01	<0,01	<0,01
Nitrat Nitrit	mg/l mg/l	50 0,5	26 < 0,02	17	29 0,30	36 < 0,02			28		26	28 < 0,02	19 0,14	21 <0,02	21	23 0,17	16 0,06	27	18 <0,02	17	17 0,08	20 <0,02	0,02	0,03
Phosphat, ortho Sauerstoff	mg/l mg/l		0,25 3,77		<0,04 3,45	6,94						<0,04 6,08	0,04 3,90	0,31 1,36		0,05 6,12	<0,04 1,77		<0,04 4,58		<0,04 4,72	<0,04 3,30	0,04 5,41	<0,04 5,33
Sulfat Coliforme Bakterien	mg/l in 100 ml	250 0	52 0		52 0	57 0	0	0	0	0	1	48 0	38	36 0	1	38	45 0		46 0		42 0	40 0	41 0	43
Escherichia Coli	in 100 ml	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0
Koloniezahl bei 22°C Koloniezahl bei 36°C	in 1 ml in 1 ml	100 100	0 28		0	0	20 0	35 0	10 0	6	19 2	4 0	0	0	2	1 0	0		8 7		1	0	0	0 2
Enterokokken Calcitlösekapazität	in 100 ml mg/l	<u>0</u> 5				0	0	0	0	0	0				0									
Kohlensäure, freie Chlor, freies	mg/l mg/l	0 (0,3)																						
Oxidierbarkeit Aluminium	mg/l mg/l	5 0,2	< 0,01										<0,01				<0,01					<0,01		
Antimon	mg/l	0,005																						
Arsen Blei	mg/l mg/l	0,01 0,01	< 0,01 <0,001										<0,002 <0,001				<0,002 <0,001					<0,002 <0,001		
Cadmium Kupfer	mg/l mg/l	0,003 2,0	< 0,001										<0,001				<0,001					<0,001		
Chrom Nickel	mg/l mg/l	0,05 0,02	<0,0005 <0,001										<0,0005 0,001				<0,0005 <0,001					<0,0005 <0,001		
Quecksilber Selen	mg/l mg/l	0,001 0,01	< 0,0005										<0,0002				<0,0005					<0,0002		
Benzol Bor	mg/l mg/l	0,001 1,0																						
Bromat Cyanid	mg/l	0,01 0,05	< 0,01										<0,01				<0,01					<0,01		
Fluorid	mg/l mg/l	1,5	< 0,15										<0,15				<0,15					<0,01		
Uran AOX	mg/l mg/l	0,01	< 0,01										<0,01				0,01					<0,01		
Dichlormethan 1,2-Dichlorethan	mg/l mg/l		< 0,005										<0,005				<0,005					<0,005		
1,1,1-Trichlorethan Tetrachlormethan	mg/l mg/l	0,01	< 0,001 < 0,001										<0,001 <0,001				<0,001 <0,001					<0,001 <0,001		
Trichlorethen Tetrachlorethen	mg/l mg/l	0,01 0,01	< 0,001 < 0,001										<0,001 <0,001				<0,001 <0,001					<0,001 <0,001		
Vinylchlorid CKW	mg/l mg/l	0,0005	<0,009										<0,009				<0,009					<0,009		
Benzo(a) pyren PAH	mg/l mg/l	0,00001											.,									-,,,,,		
Aldicarb Ametryn	μg/l μg/l	(0,1)																						
2,4-D 2.6-Dichlorbenzamid	µg/l µg/l	(0,1)																						
Aclonifen	μg/l	(0,1)																						
Atrazin Bentazon	μg/l μg/l	(0,1)																						
Bifenox Bromacil	μg/l μg/l	(0,1)																						
Bromoxynil Carbetamid	μg/l μg/l	(0,1)															1							
Chloridazon Chloroxuron	μg/l μg/l	(0,1)																						
Chlortoluron Cyanazin	µg/l µg/l	(0,1)																						
Clopyralid Desethylatrazin	μg/l	(0,1)																						
Desisopropylatrazin Dicamba	µg/l µg/l	(0,1)																						
Dichlorprop	μg/l μg/l	(0,1)																						
Diflufencian Dimefuron	μg/l μg/l	(0,1)																						
Dimethenamid Diuron	µg/l µg/l	(0,1)																						
Ethofumesat Flufenacet	μg/l μg/l	(0,1)															1							
Fluoxypyr-1-methylheptylester Flurtamone	μg/l μg/l	(0,1)																						
Hexazinon loxynil	μg/l μg/l	(0,1)																						
Isoproturon Linuron	μg/l	(0,1)																						
MCPA	μg/l μg/l	(0,1)																						
Mecoprop Metalaxyl-M	μg/l μg/l	(0,1)																						
Metamitron Metazachlor	μg/l μg/l	(0,1)																						
Methabenzthiazuron Merobromuron	μg/l μg/l	(0,1)																						
Metolachlor Metribuzin	μg/l μg/l	(0,1)																						
Metoxuron	μg/l	(0,1)	1	1		1			ļ				1		1				1		1			
Monolinuron Pendimethalin	µg/l µg/l	(0,1)																						
Propyamid Prometryn	µg/l µg/l	(0,1) (0,1)																						
Propazin Quinmerac	μg/l μg/l	(0,1) (0,1)																						
Sebuthylazin Simazin	μg/l μg/l	(0,1)																						
Terbutryn Terbuthylazin	μg/l	(0,1)		1					1				1											
Summe PBSM	μg/l μg/l	(0,1)	1	t		t			<u> </u>	1			1	1	1			<u> </u>	1		†		1	

														1000/	ingong Mico	husasar Br 1	0										BERATENDE INGI	CHICOKE VOI
Parameter	Einheit	Grenzwerte												VVV-	ingang wisc	hwasser, Br. 1	-9											
		TrinkwV	Br. 1-9	Br. 1-9	Br. 1-9	Br. 1-9	Br. 1-9	Br. 1-9	Br. 1-9	Br. 1-9	Br. 1-9	Br. 1-9	Br. 1-9	Br. 1-9	Br. 1-9	Br. 1-9	Br. 1-9											
Probenahmedatum			24.01.2019	26.02.1010	24.05.2019	12.06.2010	17 10 2010	10 11 2010	16 12 2010	15.01.2020	14.02.2020	04.04.2020	19.05.2020	18.06.2020	17 07 2020	20.09.2020	21 10 2020	24 44 2020	10 12 2020	15.01.2021	24 02 2024	22 02 2024	12.05.2021	20.07.2024	12.09.2021	20 10 2021	22 11 2021	15.12.2021
Färbung (SAK Hg 436 nm) Trübung	1/m FNU	0,5 1	24.01.2019	20.02.1019	24.03.2019	13.00.2019	17.10.2019	19.11.2019	10.12.2019	13.01.2020	14.02.2020	04.04.2020	10.00.2020	10.00.2020	17.07.2020	29.00.2020	31.10.2020	21.11.2020	19.12.2020	13.01.2021	24.02.2021	23.03.2021	12.03.2021	20.07.2021	13.00.2021	20.10.2021	23.11.2021	13.12.2021
Geruch																												
Bodensatz Temperatur	ml/l °C																											
pH-Wert elektr.Leitfähigkeit	μS/cm	6,5 - 9,5 2790																									<u> </u>	
UV-Extinktion 254 nm Ammonium	m-1 mg/l	0,5																										
Calcium Kalium	mg/l mg/l																											
Magnesium Natrium	mg/l mg/l	50 200																										
Gesamt-Härte Karbonat Härte	°dH	200																									ļ .	
Chlorid	mg/l	250																										
DOC TOC	mg/l																											
Eisen Basekapazität bis pH 8,2	mg/l mmol/l	0,2												 													 	1
Säurekapazität bis pH 4.3 Hydrogenkarbonat	mmol/l mg/l																										-	
Mangan Nitrat	mg/l mg/l	0,05 50																										
Nitrit Phosphat, ortho	mg/l mg/l	0,5																										
Sauerstoff Sulfat	mg/l	250																										
Coliforme Bakterien	mg/l in 100 ml	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Escherichia Coli Koloniezahl bei 22°C	in 100 ml in 1 ml	100	0	0	0	1	0	0	0	0	0	0	0 10	0	0	0	0	0	0	0	2	0	0	0	0	0	0 4	0
Koloniezahl bei 36°C	in 1 ml in 100 ml	100	0	0	0	0	0	0	0	0	0	0	4	0	1	0	0	0	0	0	1	1	0	0	0	0	0	0
Enterokokken Calcitlösekapazität	mg/l	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Kohlensäure, freie Chlor, freies	mg/l mg/l	(0,3)																										
Oxidierbarkeit Aluminium	mg/l mg/l	5 0,2																										
Antimon Arsen	mg/l mg/l	0,005 0,01		-			+						-	\vdash														+
Blei Cadmium	mg/l mg/l	0,01																										
Kupfer	mg/l	2,0																									ļ .	
Chrom Nickel	mg/l mg/l	0,05 0,02																										
Quecksilber Selen	mg/l mg/l	0,001 0,01																										
Benzol Bor	mg/l mg/l	0,001 1,0												-													 	
Bromat Cyanid	mg/l mg/l	0,01 0,05																										
Fluorid Uran	mg/l	1,5 0,01																									ļ .	
AOX	mg/l mg/l	0,01																										
Dichlormethan 1,2-Dichlorethan	mg/l mg/l																											
1,1,1-Trichlorethan Tetrachlormethan	mg/l mg/l	0,01												 													 	
Trichlorethen Tetrachlorethen	mg/l mg/l	0,01 0,01																										
Vinylchlorid CKW	mg/l mg/l	0,0005																										
Benzo(a) pyren PAH	mg/l mg/l	0,00001																									<u> </u>	
Aldicarb	μg/l	(0,1)																										
Ametryn 2,4-D	μg/l μg/l	(0,1)																										
2,6-Dichlorbenzamid Aclonifen	μg/l μg/l	(3,0)																										
Atrazin Bentazon	μg/l μg/l	(0,1)												 													 	
Bifenox Bromacil	μg/l μg/l	(0,1)																										
Bromoxynil Carbetamid	μg/l μg/l	(0,1)																										
Chloridazon Chloroxuron	μg/l	(0,1)															ļ	1										1
Chlortoluron	μg/l μg/l	(0,1)																										
Cyanazin Clopyralid	μg/l μg/l	(0,1)																ļ									\vdash	<u> </u>
Desethylatrazin Desisopropylatrazin	μg/l μg/l	(0,1)																										
Dicamba Dichlorprop	μg/l μg/l	(0,1)																									oxdot	\perp
Diflufencian Dimefuron	μg/l μg/l	(0,1)		-																								
Dimethenamid Diuron	μg/l μg/l	(0,1)																-		1							<u> </u>	1
Ethofumesat Flufenacet	μg/l	(0,1)															ļ	1										1
Fluoxypyr-1-methylheptylester	μg/l μg/l	(0,1)																										1
Flurtamone Hexazinon	μg/l μg/l	(0,1)																<u> </u>										
loxynil Isoproturon	μg/l μg/l	(0,1) (0,1)												$oxed{\bot}$			<u> </u>	<u> </u>				<u> </u>		<u> </u>	<u> </u>		=	<u> </u>
Linuron MCPA	μg/l μg/l	(0,1)																										
Mecoprop Metalaxyl-M	μg/l μg/l	(0,1)																1										1
Metanitron Metazachlor	μg/l	(0,1)																1		1								1
Methabenzthiazuron	μg/l μg/l	(0,1)																										1
Merobromuron Metolachlor	μg/l μg/l	(0,1)																									lder	<u> </u>
Metribuzin Metoxuron	μg/l μg/l	(0,1)		-			+						-	\vdash														+
Monolinuron Pendimethalin	μg/l μg/l	(0,1)																1										1
Propyamid	μg/l	(0,1)																1		ļ .								1
Prometryn Propazin	μg/l μg/l	(0,1)																										
Quinmerac Sebuthylazin	μg/l μg/l	(0,1)															<u> </u>	<u> </u>	<u></u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>
Simazin Terbutryn	μg/l μg/l	(0,1)																										
Terbuthylazin Summe PBSM	μg/l μg/l	(0,1)																										
ONLINE L DOM	µg/I	(C,U)			i .		1							1			l .	Ī	ı	1	Ĩ	ı .	ı	<u> </u>	<u> </u>	1		1

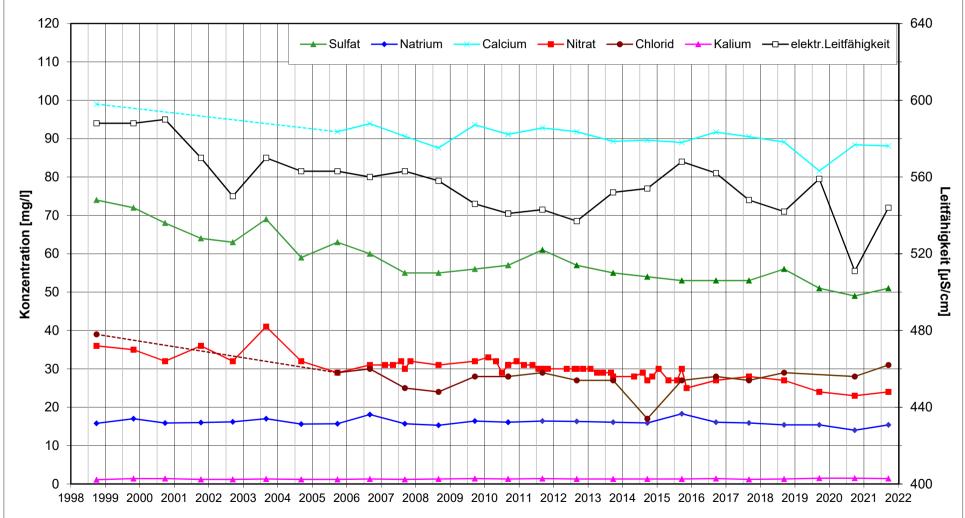
		1	ı																				BERATENDE INGEN	JIEURE VBI
Parameter	Einheit	Grenzwerte		WW-Einga	ang, Mischwass	ser Br.1-11				1				1		ing Mischwas	ser, Br. 1-11			1				
		TrinkwV	Br.1-11	Br.1-11	Br.1-11	Br.1-11	Br.1-11	WW- Ausgang Br.	WW- Ausgang Br.	WW- Ausgang Br.	WW- Ausgang Br.	WW- Ausgang Br.	WW- Ausgang Br.	WW- Ausgang Br.	WW- Ausgang Br.	WW- Ausgang Br.	WW- Ausgang Br.	WW- Ausgang Br.	WW- Ausgang Br.	WW- Ausgang Br.	WW- Ausgang Br.	WW- Ausgang Br.	WW- Ausgang Br.	WW- Ausgang Br.
								1-11	1-11	1-11	1-11	1-11	1-11	1-11	1-11	1-11	1-11	1-11	1-11	1-11	1-11	1-11	1-11	1-11
Probenahmedatum Färbung (SAK Hg 436 nm)	1/m	0,5	25.03.2019	10.03.2020	29.09.2020	20.04.2021	21.09.2021	09.10.2018 <0,1	24.01.2019 0,1	26.02.2019 0,1	01.04.2019 0,1	24.05.2019 0,1	13.06.2019 <0,1	19.09.2019 0,1	17.10.2019 <0,1	19.11.2019 <0,1	16.12.2019 0,1	15.01.2020 <0,1	14.02.2020 <0,1	02.03.2020	23.03.2020	30.03.2020	01.04.2020	04.04.2020 <0,1
Trübung	FNU	1	0,35	0,04	0,08	0,12	0,42	0,08	0,15	0,23	0,02	0,02	0,02	0,05	0,04	0,07	0,22	0,05	0,06					0,07
Geruch Bodensatz	ml/l							ohne	ohne	ohne	ohne	ohne	ohne	ohne	ohne	ohne	ohne	ohne	ohne					ohne
Temperatur pH-Wert	°C	6,5 - 9,5	10,4 7,64	10,4 7,51	11,5 7,47	10,5 7,46	11,4 7,47	7,49	7,45	7,46	7,46	11,0 7,62	7,52	7,59	7,49	7,55	7,63	7,49	7,53					7,45
elektr.Leitfähigkeit	μS/cm	2790	544	530	498	521	535	524	505	508	511	510	511	511	509	508	507	517	515					518
UV-Extinktion 254 nm Ammonium	m-1 mg/l	0,5	2,8 <0,1	2,7 <0,05	3,0 <0,05	2,9 <0,05	2,3 <0,05	<0,1			<0,1	<0,1	<0,1	<0,1	<0,1	<0,05	<0,05	<0,05	<0,05					<0,05
Calcium Kalium	mg/l mg/l		85,8 1,9	89,5 2,2	87,6 2,3	89,9 2,2	92,9 2,6					85,4												-
Magnesium Natrium	mg/l mg/l	50 200	2,8 11,5	2,9 12,4	2,8 11,0	2,8 12,1	2,8 13,2					2,8 12,7												
Gesamt-Härte Karbonat Härte	°dH °dH	200	12,6	13,2	12,9	13,2	13,6					1.2,7												
Chlorid	mg/l	250	23	23	24	24	27					23												
DOC TOC	mg/l		2,0	1,4	1,6	1,0	0,7					<1,0												-
Eisen Basekapazität bis pH 8,2	mg/l mmol/l	0,2	0,01 0,27	<0,01 0,32	<0,01 0,33	0,01 0,28	<0,01 0,35					<0,01 0,24												
Säurekapazität bis pH 4.3	mmol/l		3,24	3,79	3,37	3,36	3,47					3,28												
Hydrogenkarbonat Mangan	mg/l mg/l	0,05	197,5 <0,01	231,2 <0,01	205,6 <0,01	205,0 <0,01	211,7 <0,01					0,01												<u> </u>
Nitrat Nitrit	mg/l mg/l	50 0,5	22 <0,02	23 <0,02	22 <0,02	23 <0,02	25 <0,02					0.02	23											
Phosphat, ortho Sauerstoff	mg/l mg/l		<0,04 0,99	0,04 4,71	0,04 4,56	0,04 4,75	0,04 5,30																	
Sulfat	mg/l	250	46	43	43	46	45					48												
Coliforme Bakterien Escherichia Coli	in 100 ml in 100 ml	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Koloniezahl bei 22°C	in 1 ml	100	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Koloniezahl bei 36°C Enterokokken	in 1 ml in 100 ml	100 0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Calcitlösekapazität Kohlensäure, freie	mg/l mg/l	5 0							H		<u> </u>	-6,20				<u> </u>	 		<u> </u>				-	
Chlor, freies Oxidierbarkeit	mg/l mg/l	(0,3)																						-
Aluminium	mg/l	5 0,2	0,01									<0,01												
Antimon Arsen	mg/l mg/l	0,005 0,01	<0,002									<0,0005 <0,002												
Blei Cadmium	mg/l mg/l	0,01 0,003	<0,001 <0,001									<0,001 <0,001												
Kupfer Chrom	mg/l mg/l	2,0 0,05	<0,0005									<0,01	<0.000E											
Nickel	mg/l	0,02	0,001									<0,01	<0,0005											
Quecksilber Selen	mg/l mg/l	0,001 0,01	<0,0005										<0,0005 <0,001											
Benzol Bor	mg/l mg/l	0,001 1.0											<0,001 <0,05											
Bromat	mg/l	0,01 0.05	<0.01										<0,007 <0.01											
Cyanid Fluorid	mg/l mg/l	1,5	<0,01										<0,15											
Uran AOX	mg/l mg/l	0,01	0,01										<0,001											-
Dichlormethan 1,2-Dichlorethan	mg/l mg/l		<0,005										<0,001											
1,1,1-Trichlorethan	mg/l		<0,001										<0,001											
Tetrachlormethan Trichlorethen	mg/l mg/l	0,01 0,01	<0,001 <0,001										<0,001											
Tetrachlorethen Vinylchlorid	mg/l mg/l	0,01 0,0005	<0,001									<0,0005	<0,001											<u> </u>
CKW Benzo(a) pyren	mg/l mg/l	(0,01) 0,00001	<0,009									<0,000007												
PAH	mg/l											<0,000007												
Aldicarb Ametryn	μg/l μg/l	(0,1)																						<u> </u>
2,4-D 2.6-Dichlorbenzamid	μg/l μg/l	(0,1)	<0,05 <0.05	<0,05 <0.05			<0,05 <0.05																	
Aclonifen Atrazin	μg/l	(0,1)	<0,05 <0,05	<0,05 <0,05			<0,05 <0,05																	
Bentazon	μg/l μg/l	(0,1)	<0,05	<0,05			<0,05																	
Bifenox Bromacil	μg/l μg/l	(0,1)	<0,05 <0,05	<0,05 <0,05			<0,05 <0,05																	-
Bromoxynil Carbetamid	μg/l μg/l	(0,1)	<0,05 <0,05	<0,05 <0,05			<0,05 <0,05																	
Chloridazon	μg/l	(0,1)	<0,05	<0,05			<0,05																	
Chloroxuron Chlortoluron	μg/l μg/l	(0,1)	<0,05	<0,05			<0,05																	
Cyanazin Clopyralid	μg/l μg/l	(0,1) (0,1)	<0,05	<0,05		<u></u>	<0,05		<u> </u>		<u> </u>	<u> </u>						<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>
Desethylatrazin Desisopropylatrazin	μg/l μg/l	(0,1)	<0,05 <0.05	<0,05 <0.05			<0,05 <0.05																	1
Dicamba Dichlorprop	μg/l	(0,1)	<0,05 <0,05	<0,05 <0,05 <0,05		Ì	<0,05 <0,05										Ì							
Diflufencian	μg/l μg/l	(0,1)	<0,05	<0,05			<0,05																	
Dimefuron Dimethenamid	μg/l μg/l	(0,1)	<0,05 <0,05	<0,05 <0,05		<u> </u>	<0,05 <0,05		<u> </u>	<u></u>	<u> </u>					<u>L</u>	<u> </u>		<u> </u>	<u> </u>			<u> </u>	
Diuron Ethofumesat	μg/l μg/l	(0,1)	<0,05 <0,05	<0,05 <0,05			<0,05 <0,05																	
Flufenacet	μg/l	(0,1)	<0,05	<0,05			<0,05																	
Fluoxypyr-1-methylheptylester Flurtamone	μg/l μg/l	(0,1)	<0,05 <0,05	<0,05 <0,05			<0,05 <0,05																	
Hexazinon loxynil	μg/l μg/l	(0,1) (0,1)	<0,05 <0,05	<0,05 <0,05		 	<0,05 <0,05		<u> </u>			-					 	-			<u> </u>			
Isoproturon	μg/l	(0,1)	<0,05	<0,05			<0,05																	
Linuron MCPA	μg/l μg/l	(0,1)	<0,05	<0,05			<0,05																	
Mecoprop Metalaxyl-M	μg/l μg/l	(0,1)	<0,05 <0,05	<0,05 <0,05			<0,05 <0,05																	-
Metamitron Metazachlor	μg/l μg/l	(0,1)	<0,05 <0,05	<0,05 <0,05			<0,05 <0,05																	f -
Methabenzthiazuron	μg/l	(0,1)	<0,05	<0,05			<0,05																	
Merobromuron Metolachlor	μg/l μg/l	(0,1)	<0,05	<0,05			<0,05																	
Metribuzin Metoxuron	μg/l μg/l	(0,1)	<0,05	<0,05			<0,05		H							<u> </u>	 		<u> </u>				-	
Monolinuron	μg/l	(0,1)	<0,05	<0,05			<0,05		-		1					1	1		1				-	-
Pendimethalin Propyamid	μg/l μg/l	(0,1)	<0,05 <0,05	<0,05 <0,05			<0,05 <0,05																	
Prometryn Propazin	μg/l μg/l	(0,1)				<u></u>			<u> </u>		<u> </u>	<u> </u>				<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
Quinmerac Sebuthylazin	μg/l μg/l	(0,1)	<0,05	<0,05			<0,05																	
Simazin	μg/l	(0,1)	<0,05	<0,05			<0,05																	
Terbutryn Terbuthylazin	μg/l μg/l	(0,1)	<0,05 <0,05	<0,05 <0,05	<u> </u>		<0,05 <0,05				<u> </u>	<u> </u>				<u> </u>		<u> </u>	<u> </u>			<u> </u>		
Summe PBSM	μg/l	(0,5)	<0,25	<0,25			<0,25		1														1	

F10JN1 1610J-17												1000/ 0		D- 4 44								BERATENDE INGE	:NIEURE VBI
Parameter	Einheit	Grenzwerte											ng Mischwass	1		ww-							
		TrinkwV	WW- Ausgang Br.	WW- Ausgang Br.	WW- Ausgang Br.		WW- Ausgang Br.		Ausgang Br.			WW- Ausgang Br.	WW- Ausgang Br.	WW- Ausgang Br.	WW- Ausgang Br.								
Probenahmedatum			1-11 15.05.2020	1-11 16.06.2020	1-11	1-11 29.08.2020	1-11 01.10.2020	1-11 31.10.2020	1-11 21.11.2020	1-11	1-11 15.01.2021	1-11 05.02.2021	1-11 24.02.2021	1-11 23.03.2021	1-11 20.04.2021	1-11	1-11	1-11 20.07.2021	1-11	1-11 21.09.2021	1-11 20.10.2021	1-11 23.11.2021	1-11
Färbung (SAK Hg 436 nm)	1/m	0,5	<0,1	0,1	<0,1	0,1	0,2	0,2	0,1	<0,1	0,1	05.02.2021	<0,1	0,3	0,2	0,1	0,1	<0,1	0,1	0,1	<0,1	0,1	0,1
Trübung Geruch	FNU	1	0,08 ohne	0,1 ohne	0,06 ohne	0,04 ohne	0,04 ohne	0,17 ohne	0,27 ohne	0,08 ohne	0,16 ohne		0,19 ohne	0,39 ohne	0,09 ohne	0,05 ohne	0,02 ohne	0,03 ohne	0,03 ohne	0,21 ohne	0,27 ohne	0,08 ohne	0,05 ohne
Bodensatz Temperatur	ml/l °C		11													10,8							+
pH-Wert elektr.Leitfähigkeit	μS/cm	6,5 - 9,5 2790	7,47 520	7,52 523	7,55 521	7,4 518	7,35 524	7,73 528	7,43 529	7,41 519	7,45 517		7,38 525	7,45 514	7,42 517	7,48 515	7,59 516	7,60 520	7,48 519	7,58 517	7,55 528	7,63 521	7,73 527
UV-Extinktion 254 nm	m-1									<0,05								<0,05					<0,05
Ammonium Calcium	mg/l mg/l	0,5	<0,05 88,6	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05		<0,05	<0,05	<0,05	<0,05 83,8	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Kalium Magnesium	mg/l mg/l	50	3													2,4 2,9							+
Natrium Gesamt-Härte	mg/l °dH	200	12,5 13,1													11,6 12,4							-
Karbonat Härte Chlorid	°dH mg/l	250	9,4 27													9,4 24							
DOC	mg/l	200																					
TOC Eisen	mg/l	0,2	1,5 <0,01													<0,8 <0,01							_
Basekapazität bis pH 8,2 Säurekapazität bis pH 4.3	mmol/l mmol/l		0,26 3,34													3,34 0,27							
Hydrogenkarbonat Mangan	mg/l mg/l	0,05	<0,01													<0,01							+
Nitrat Nitrit	mg/l mg/l	50 0,5	<0,02	24												<0,02	23						
Phosphat, ortho Sauerstoff	mg/l	0,0	-0,02													-0,02							-
Sulfat	mg/l mg/l	250	26													44							
Coliforme Bakterien Escherichia Coli	in 100 ml in 100 ml	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
Koloniezahl bei 22°C Koloniezahl bei 36°C	in 1 ml in 1 ml	100 100	24 0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	2	0	0
Enterokokken	in 100 ml	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
Calcitlösekapazität Kohlensäure, freie	mg/l mg/l	5 0	-1,70													-0,60							
Chlor, freies Oxidierbarkeit	mg/l mg/l	(0,3)																					+
Aluminium Antimon	mg/l mg/l	0,2 0,005	<0,01 <0,0005													<0,01 <0,0005							-
Arsen Blei	mg/l mg/l	0,01 0,01	<0,002 <0,001													<0,0002 <0,001							1
Cadmium	mg/l	0,003	<0,001													<0,001							
Kupfer Chrom	mg/l mg/l	2,0 0,05	<0,01	<0,0005												<0,01	<0,0005						
Nickel Quecksilber	mg/l mg/l	0,02 0,001	<0,001	<0,0002												<0,001	<0,0002						+
Selen Benzol	mg/l mg/l	0,01 0,001		<0,001 <0,001													<0,001 <0,001						-
Bor Bromat	mg/l mg/l	1,0 0,01		<0,07 <0.007													<0,07 <0.007						
Cyanid Fluorid	mg/l	0,05		<0,007 <0,01 <0.15													<0,007 <0,03 <0.15						
Uran	mg/l mg/l	0,01		<0,15													<0,15						
AOX Dichlormethan	mg/l mg/l																						
1,2-Dichlorethan 1,1,1-Trichlorethan	mg/l mg/l			<0,001													<0,001						
Tetrachlormethan Trichlorethen	mg/l mg/l	0,01 0,01		<0,001													<0,001						-
Tetrachlorethen Vinylchlorid	mg/l mg/l	0,01 0,0005	<0,0005	<0,001												<0,0005	<0,001						1
CKW	mg/l	(0,01)																					-
Benzo(a) pyren PAH	mg/l mg/l	0,00001	<0,00007 <0,00004													<0,000007 <0,00004							
Aldicarb Ametryn	μg/l μg/l	(0,1) (0,1)																					
2,4-D 2,6-Dichlorbenzamid	μg/l μg/l	(0,1)																					+
Aclonifen Atrazin	μg/l μg/l	(0,1)																					-
Bentazon Bifenox	μg/l μg/l	(0,1)																					
Bromacil Bromoxynil	μg/l μg/l	(0,1)																					+
Carbetamid	μg/l	(0,1)																					
Chloridazon Chloroxuron	μg/l μg/l	(0,1)																					
Chlortoluron Cyanazin	μg/l μg/l	(0,1)			<u></u>							<u></u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>			
Clopyralid Desethylatrazin	μg/l μg/l	(0,1) (0,1)																					<u> </u>
Desisopropylatrazin Dicamba	μg/l μg/l	(0,1)																					1
Dichlorprop Diflufencian	μg/l μg/l	(0,1)														1							1
Dimefuron	μg/l	(0,1)														1	1						
Dimethenamid Diuron	μg/l μg/l	(0,1)																					<u> </u>
Ethofumesat Flufenacet	μg/l μg/l	(0,1)																					
Fluoxypyr-1-methylheptylester Flurtamone	μg/l μg/l	(0,1) (0,1)																					
Hexazinon loxynil	μg/l μg/l	(0,1) (0,1)																					+
Isoproturon Linuron	μg/l	(0,1)												İ	İ	1							1
MCPA	μg/l μg/l	(0,1)																					1
Mecoprop Metalaxyl-M	μg/l μg/l	(0,1)																					
Metamitron Metazachlor	μg/l μg/l	(0,1)			<u></u>							<u></u>		<u> </u>	<u> </u>	<u>L</u>	<u> </u>						\pm
Methabenzthiazuron Merobromuron	μg/l μg/l	(0,1)									-					 		H					-
Metolachlor Metribuzin	μg/l μg/l	(0,1)																					1
Metoxuron	μg/l	(0,1)														1	1						
Monolinuron Pendimethalin	μg/l μg/l	(0,1)																					
Propyamid	μg/l μg/l	(0,1) (0,1)																					
Prometryn					1													1					1
Prometryn Propazin Quinmerac	μg/l μg/l	(0,1)										<u></u>		<u></u>	<u> </u>	<u> </u>							
Prometryn Propazin Quinmerac Sebuthylazin	μg/l μg/l	(0,1) (0,1)																					
Prometryn Propazin Quinmerac	μg/l	(0,1)																					

Anhang 5

Anhang 5: Hydrochemie

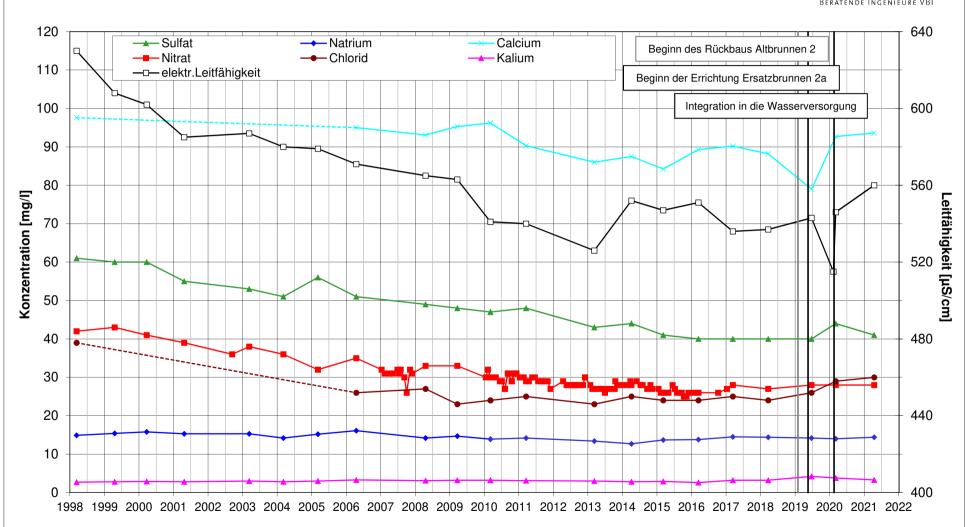
Anhang 5.1: Ergebnisse der hydrochemischen Analysen (Tabelle, 5 Jahre)


Anhang 5.2: Hydrochemische Entwicklung an den Förderbrunnen (Grafiken)

Hydrogeologische Beweissicherung 2021

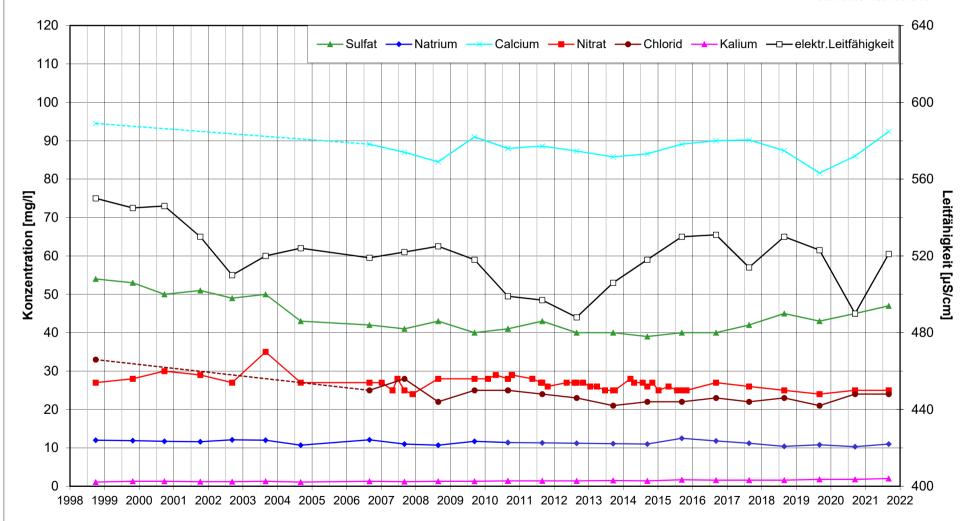
Proj.-Nr.: 1810j-18

Brunnen 1 Hydrochemische Entwicklung



Hydrogeologische Beweissicherung 2021 Proj.-Nr.: 1810j-18

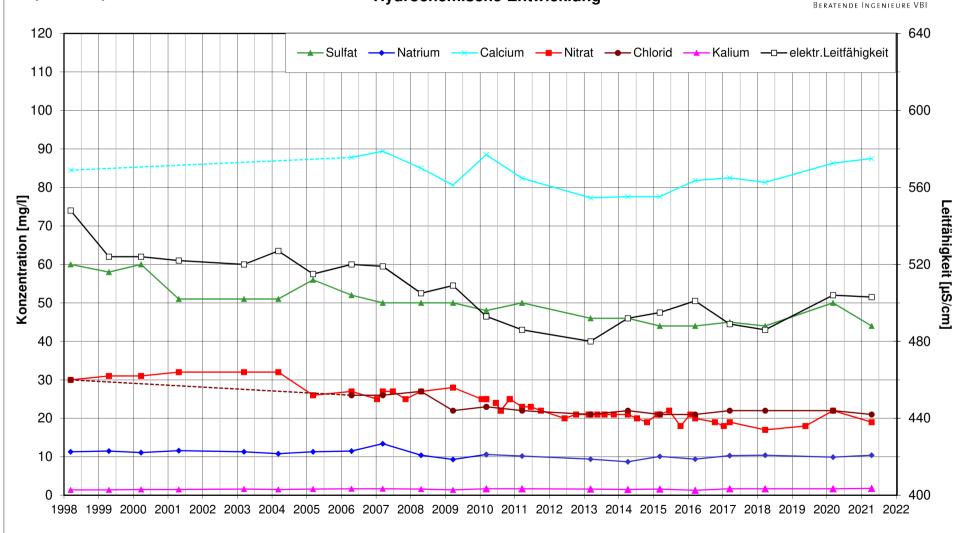
Brunnen 2/2a Hydrochemische Entwicklung



Hydrogeologische Beweissicherung 2021

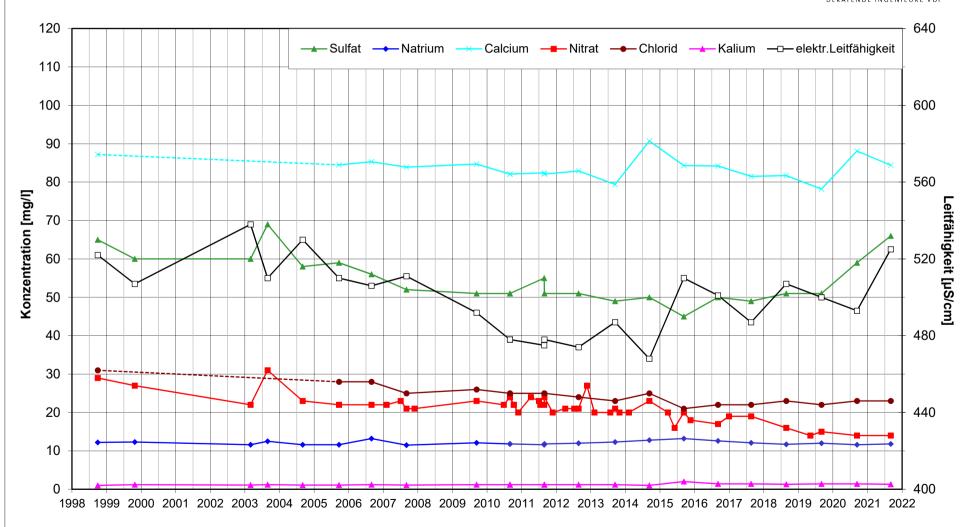
Proj.-Nr.: 1810j-18

Brunnen 3 Hydrochemische Entwicklung



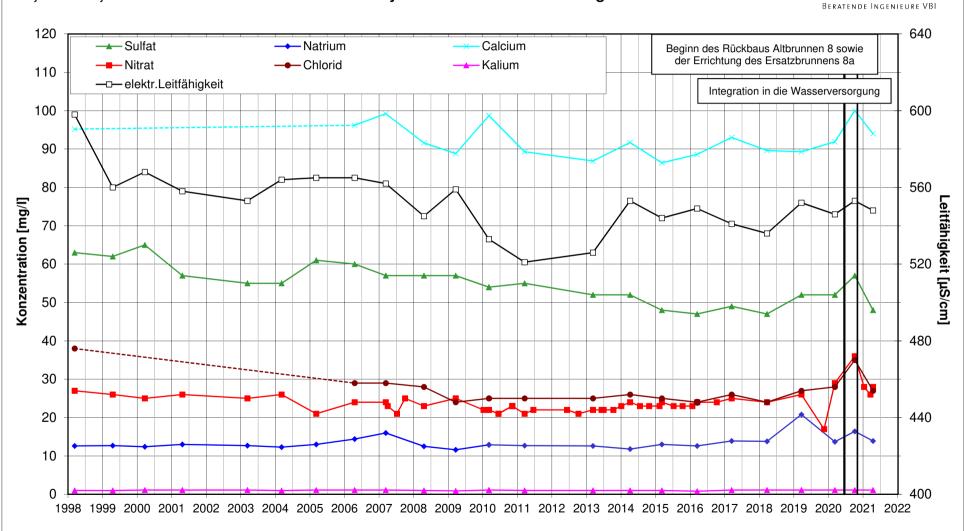
Hydrogeologische Beweissicherung 2021 Proj.-Nr.: 1810j-18

Brunnen 4 Hydrochemische Entwicklung



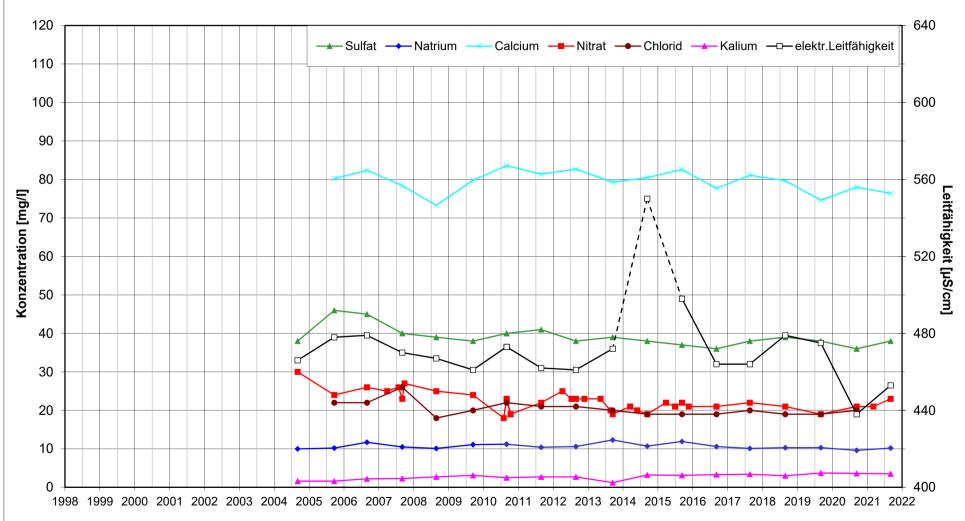
Hydrogeologische Beweissicherung 2021 Proj.-Nr.: 1810j-18

Brunnen 7 Hydrochemische Entwicklung



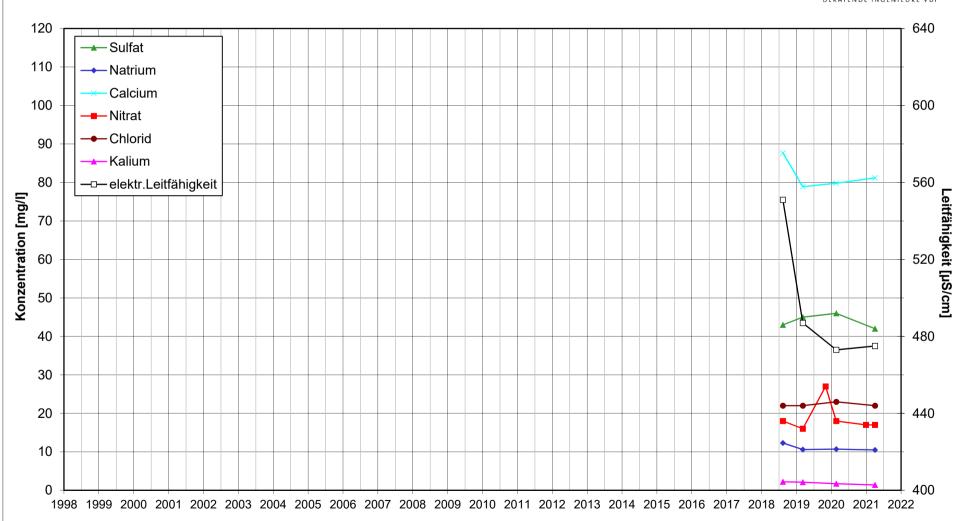
Hydrogeologische Beweissicherung 2021 Proi.-Nr.: 1810i-18

Brunnen 8/8a Hydrochemische Entwicklung



Hydrogeologische Beweissicherung 2021 Proj.-Nr.: 1810j-18

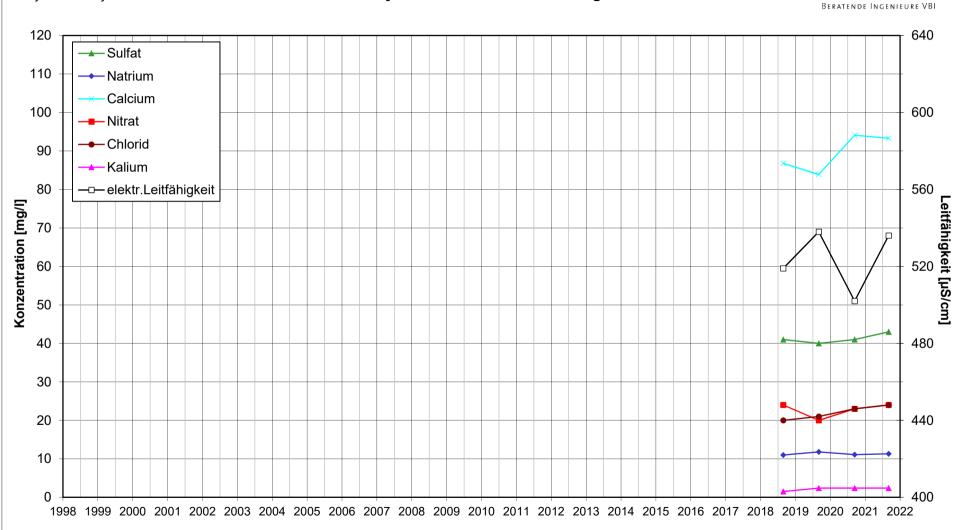
Brunnen 9 Hydrochemische Entwicklung



Hydrogeologische Beweissicherung 2021

Proj.-Nr.: 1810j-18

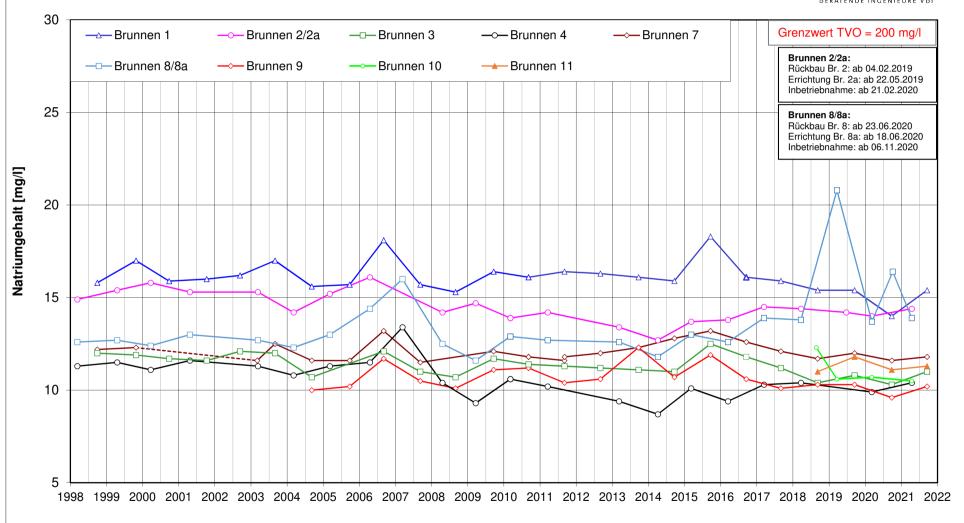
Brunnen 10 Hydrochemische Entwicklung



Hydrogeologische Beweissicherung 2021 Proj.-Nr.: 1810j-18

Brunnen 11 Hydrochemische Entwicklung

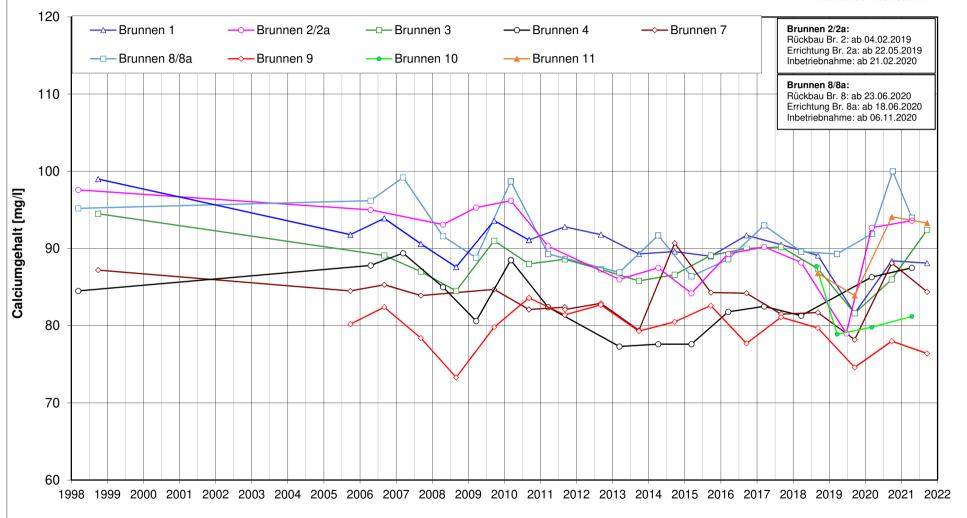
Gemeindewerke Steinhagen GmbH **SCHMIDT Wasserwerk Patthorst** + PARTNER Brunnen 1 - 4, 7 - 11 Hydrogeologische Beweissicherung 2021 Proj.-Nr.: 1810j-18 Entwicklung der Leitfähigkeit BERATENDE HYDROGEOLOGEN BDG BERATENDE INGENIEURE VBI Brunnen 2/2a → Brunnen 1 --- Brunnen 3 Brunnen 2/2a: Rückbau Br. 2: ab 04.02.2019 → Brunnen 7 — Brunnen 4 Brunnen 8/8a Errichtung Br. 2a: ab 22.05.2019 620 Inbetriebnahme: ab 21.02.2020 —- Brunnen 9 → Brunnen 10 Brunnen 11 Brunnen 8/8a: Rückbau Br. 8: ab 23.06.2020 Errichtung Br. 8a: ab 18.06.2020 Inbetriebnahme: ab 06.11.2020 580 Elektrische Leitfähigkeit [µS/cm] 540 500 460 420 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022


Gemeindewerke Steinhagen GmbH **SCHMIDT Wasserwerk Patthorst** + PARTNER Brunnen 1 - 4, 7 -11 Hydrogeologische Beweissicherung 2021 Proj.-Nr.: 1810j-18 Entwicklung der Nitratgehalte BERATENDE HYDROGEOLOGEN BDG BERATENDE INGENIEURE VBI 50 Grenzwert TVO = 50 mg/l — Brunnen 2/2a —□—Brunnen 3 — → Brunnen 4 → Brunnen 7 -D-Brunnen 8/8a → Brunnen 9 — Brunnen 10 → Brunnen 11 45 40 35 30 Nitratgehalt [mg/l] 25 20 15 Brunnen 2/2a: 10 Rückbau Br. 2: ab 04.02.2019 Errichtung Br. 2a: ab 22.05.2019 Inbetriebnahme: ab 21.02.2020 5 Brunnen 8/8a: Rückbau Br. 8: ab 23.06.2020 Errichtung Br. 8a: ab 18.06.2020 Inbetriebnahme: ab 06.11.2020 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Gemeindewerke Steinhagen GmbH **SCHMIDT Wasserwerk Patthorst** Brunnen 1 - 4, 7 - 11 + PARTNER Hydrogeologische Beweissicherung 2021 Entwicklung der Sulfatgehalte Proj.-Nr.: 1810j-18 BERATENDE HYDROGEOLOGEN BDG BERATENDE INGENIEURE VBI 80 Grenzwert TVO = 250 mg/l Brunnen 8/8a: Rückbau Br. 8: ab 23.06.2020 Errichtung Br. 8a: ab 18.06.2020 Brunnen 2/2a: Inbetriebnahme: ab 06.11.2020 Rückbau Br. 2: ab 04.02.2019 Errichtung Br. 2a: ab 22.05.2019 70 Inbetriebnahme: ab 21.02.2020 60 Sulfatgehalt [mg/l] 50 40 30 — Brunnen 2/2a — Brunnen 3 — Brunnen 4 → Brunnen 7 —□— Brunnen 8/8a —— Brunnen 9 — Brunnen 10 → Brunnen 11 20 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Hydrogeologische Beweissicherung 2021 Proj.-Nr.: 1810j-18

Brunnen 1 - 4, 7 - 11 Entwicklung der Natriumgehalte



Hydrogeologische Beweissicherung 2021 Proj.-Nr.: 1810j-18

Brunnen 1 - 4, 7 - 11 Entwicklung der Calciumgehalte

BERATENDE HYDROGEOLOGEN BDG BERATENDE INGENIEURE VBI

Anlagen

- Anlage 1: Zusammenfassende wasserwirtschaftliche Tabelle mit Darlegung der bewertungsrelevanten klimatischen und wasserwirtschaftlichen Kenndaten für den Beweissicherungszeitraum der letzten sechs Jahre (2015 bis 2021)
- Anlage 2: Regionale Bewertung der klimatischen und hydrogeologischen Situation im Einzugsgebiet des WWK Patthorst im Zeitraum 1996 2021

Anlage 1

Anlage 1: Zusammenfassende wasserwirtschaftliche Tabelle mit Darlegung der bewertungsrelevanten klimatischen und wasserwirtschaftlichen Kenndaten für den Beweissicherungszeitraum der letzten sechs Jahre (2015 bis 2021)

Gemeindewerke Steinhagen GmbH Beweissicherung Wasserwerk Patthorst

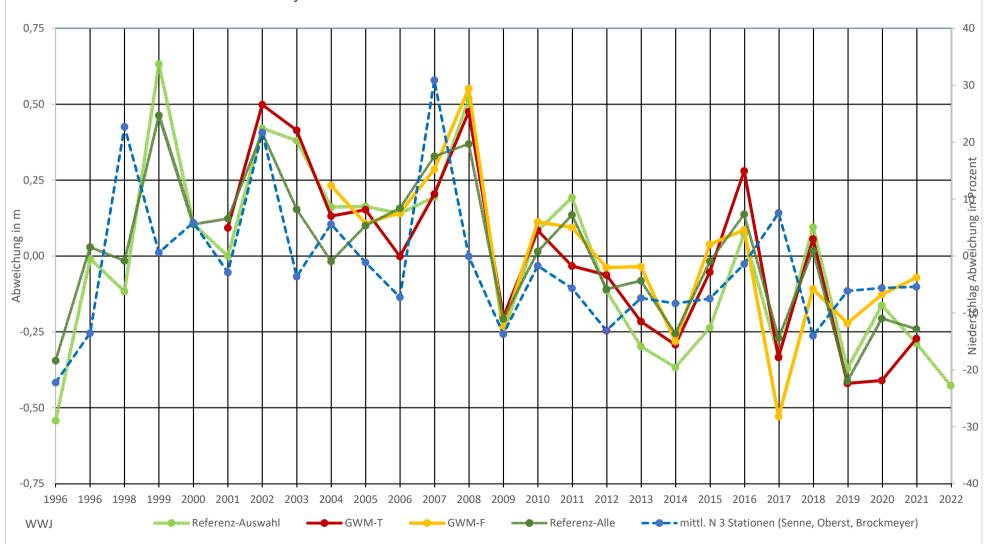
Proj.-Nr.: 1810j-18

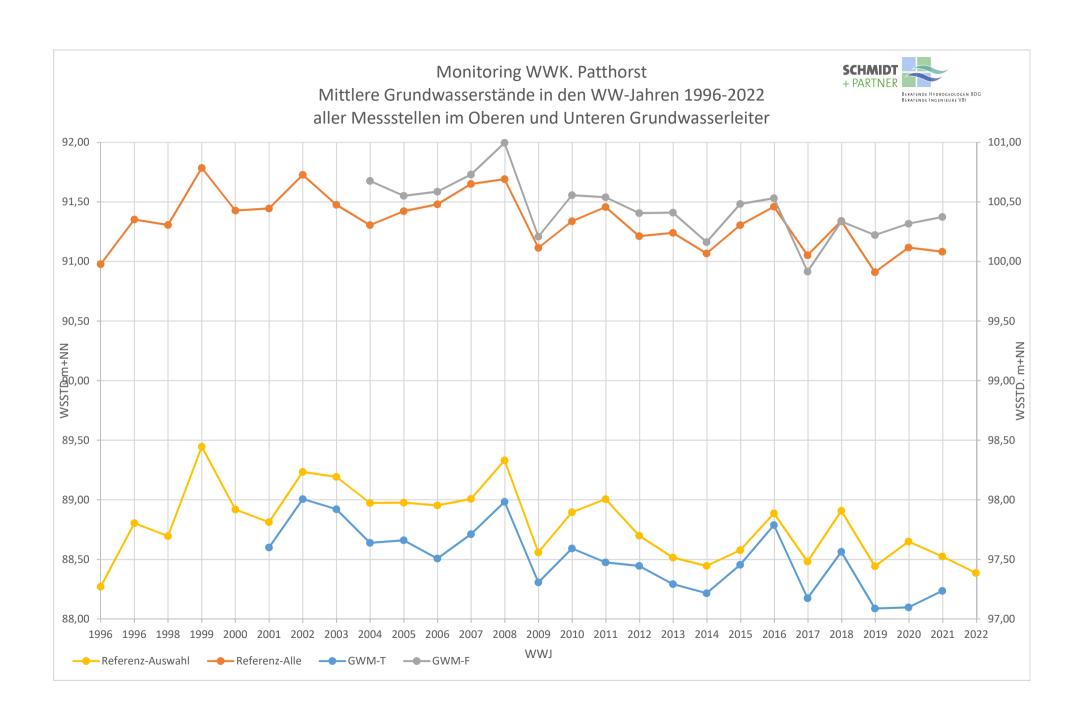
Wasserwerk Patthorst

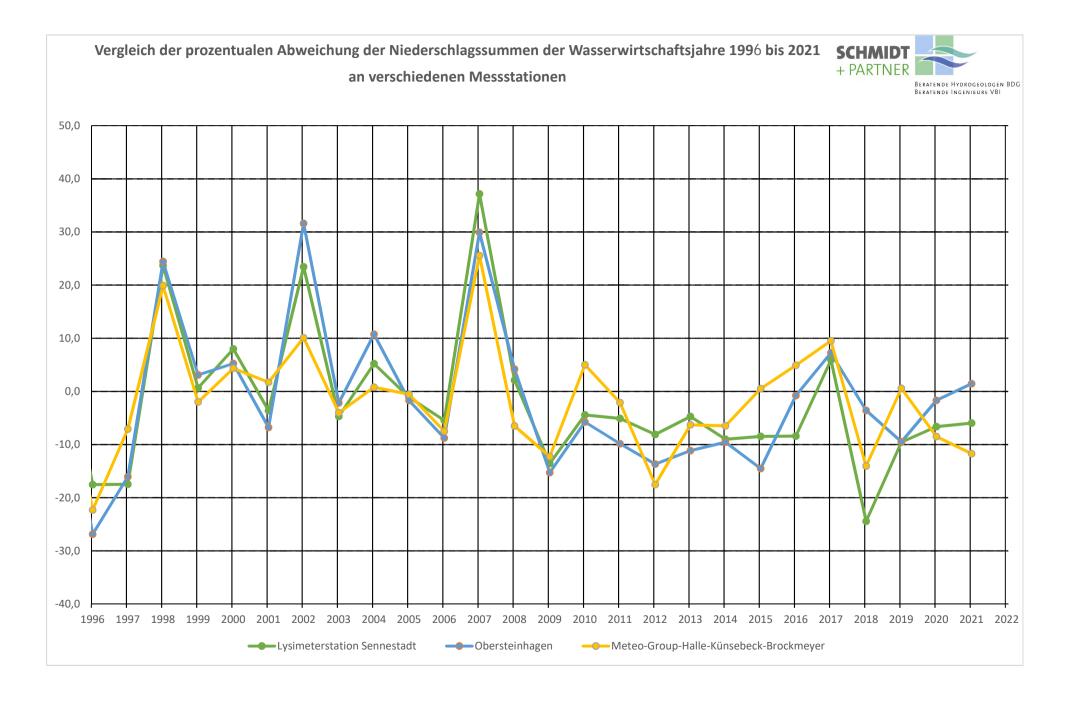
Jahr	Nieder	schlag			Klimatische Abweichung				
	Lysimeterst	ation Senne		Wasserwerk Pattho	Brunnen 9				
	MM1	WHJ	Jahres	fördermenge	Vormonat Sep	tember	Oktober		
	vom Mi	chung ttelwert 994 - 2021)		Ausschöpfungsgrad der WR-Menge	in Klammern: Ausschöpfungsgrad der auf ein Jahr hochgerechneten WR-Menge		mittlere Abweichung zum Wasserstandsniveau Stichtag 10/2003		
	[%]	[%]	[10³ m³]	[%]	[10³ m³]	[10 ³ m ³]	[m]		
2015	-8,0	-11,2	1.042	78	80,8 (72 %)	9,5	0,29		
2016	-8,0	8,2	987	74	86,1 (77 %)	10,3	0,34		
2017	6,4	-25,2	1.043	78	85,3 (76 %)	10,4	0,26		
2018	-24,1	4,1	1.120	84	90,7 (81 %)	10,1	0,02		
2019	-9,1	1,7	1.126	84	86,5 (77 %)	7,6	-0,27		
2020	-6,2	1,5	1.165	87	90,9 (81%)	6,9	-0,30		
2021	-5,5	-17,6	1.107	83	90,0 (81%)	5,0	0,04		

WWJ = Wasserwirtschaftsjahr; **WHJ** = Winterhalbjahr in blau = **über**durchschnittlich, in rot = **unter**durchschnittlich

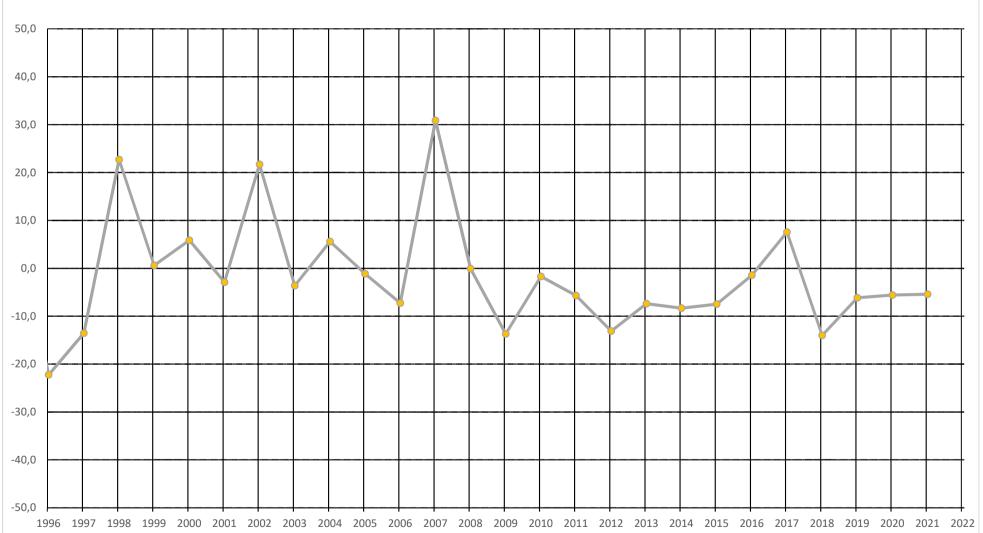
Wasserrechtlich genehmigte Menge =	1.340.000 m³/a


Anlage 2


Anlage 2: Regionale Bewertung der klimatischen und hydrogeologischen Situation im Einzugsgebiet des WWK Patthorst im Zeitraum 1996 - 2021


Monitoring WWK. Patthorst

Abweichung der mittlere Grundwasserstände und Niederschläge in den WW-Jahren 1996-2022 vom lj. Mittelwert des Zeitraumes 2002-2021



Vergleich der prozentualen Abweichung der Niederschlagssummen der Wasserwirtschaftsjahre 1996 bis 2021 zum Mittelwert verschiedenener Messstationen

